Citation: | LIN Lan, ZHANG Ge, WU Shuicai. Research Progress of Brain Age Gap Estimation as a Biomarker for Brain Aging[J]. Journal of Beijing University of Technology, 2021, 47(3): 303-310. DOI: 10.11936/bjutxb2019100007 |
The fast increase of aging population in global leads to the prevalence of aging-associated neurodegenerative diseases, which places a substantial socioeconomic burden on the whole society. However, aging is a multifactorial process determined by genetic and environmental factors. The development of validated neuroimaging-based biomarker is essential for the risk assessments and predictions of age-related neurodegenerative diseases. The brain age gap estimation is the most widely used measure for assessing brain health status based on magnetic resonance images (MRI). This review first introduced the research progress of brain aging based on MRI and brain age estimation model based on neuroimaging, then summarized and discussed the findings on BrainAGE as a biomarker from the aspects of genetics, brain development, neurodegenerative diseases, psychiatric diseases, chronic diseases and cognitive reserve. Finally, the existing problems and future research direction were put forward.
[1] |
Alzheimer's Association. 2016 Alzheimer's disease facts and figures[J]. Alzheimer's & Dementia, 2016, 12(4): 459-509. doi: 10.1016/j.jalz.2016.03.001
|
[2] |
PRINCE M, BRYCE R, ALBANESE E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2013, 9(1): 63-75, e2. http://www.sciencedirect.com/science/article/pii/S1552526012025319
|
[3] |
RAZ N, GHISLETTA P, RODRIGUE K M, et al. Trajectories of brain aging in middle-aged and older adults: regional and individual differences[J]. NeuroImage, 2010, 51(2): 501-511. doi: 10.1016/j.neuroimage.2010.03.020
|
[4] |
STORSVE A B, FJELL A M, TAMNES C K, et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change[J]. Journal of Neuroscience, 2014, 34(25): 8488-8498. doi: 10.1523/JNEUROSCI.0391-14.2014
|
[5] |
SALAT D H, TUCH D S, GREVE D N, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging[J]. Neurobiology of Aging, 2005, 26(8): 1215-1227. doi: 10.1016/j.neurobiolaging.2004.09.017
|
[6] |
FRANKE K, ZIEGLER G, KLÖPPEL S, et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters[J]. NeuroImage, 2010, 50(3): 883-892. doi: 10.1016/j.neuroimage.2010.01.005
|
[7] |
HEDMAN A M, HAREN N E M V, SCHNACK H G, et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies[J]. Human Brain Mapping, 2012, 33(8): 1987-2002. doi: 10.1002/hbm.21334
|
[8] |
SIGURDSSON S, ASPELUND T, FORSBERG L, et al. Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study[J]. NeuroImage, 2012, 59(4): 3862-3870. doi: 10.1016/j.neuroimage.2011.11.024
|
[9] |
林岚, 王婧璇, 付振荣, 等. 脑老化中脑年龄预测模型研究综述[J]. 生物医学工程学杂志, 2019, 36(3): 493-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201903020.htm
LIN L, WANG J X, FU Z R, et al. A review on brain age prediction in brain ageing[J]. Journal of Biomedical Engineering, 2019, 36(3): 493-498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201903020.htm
|
[10] |
田苗, 林岚, 张柏雯, 等. 深度学习在神经影像中的应用研究[J]. 中国医疗设备, 2016, 31(12): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201612002.htm
TIAN M, LIN L, ZHANG B W, et al. Study on the application of deep learning in neuroimaging[J]. China Medical Devices, 2016, 31(12): 4-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201612002.htm
|
[11] |
SU L F, WANG L B, HU D W. Predicting the age of healthy adults from structural MRI by sparse representation[C]//Interchange Conference on Intelligent Science and Intelligent Data Engineering. Berlin: Springer, 2012: 271-279.
|
[12] |
WANG J Q, DAI D, LI M, et al. Human age estimation with surface-based features from MRI images[C]//International Workshop on Machine Learning in Medical Imaging. Berlin: Springer, 2012: 111-118.
|
[13] |
LIN L, JIN C, FU Z R, et al. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks[J]. Computer Methods and Programs in Biomedicine, 2016, 125: 8-17. doi: 10.1016/j.cmpb.2015.11.012
|
[14] |
SCHNACK H G, VAN HAREN N E M, NIEUWENHUIS M, et al. Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study[J]. American Journal of Psychiatry, 2016, 173(6): 607-616. doi: 10.1176/appi.ajp.2015.15070922
|
[15] |
COLE J H, POUDEL R PK, TSAGKRASOULIS D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker[J]. NeuroImage, 2017, 163: 115-124. doi: 10.1016/j.neuroimage.2017.07.059
|
[16] |
FUJIMOTO R, ITO K, WU K, et al. Brain age estimation from T1-weighted images using effective local features[C]//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE, 2017: 3028-3031.
|
[17] |
LIEM F, VAROQUAUX G, KYNAST J, et al. Predicting brain-age from multimodal imaging data captures cognitive impairment[J]. NeuroImage, 2017, 148: 179-188. doi: 10.1016/j.neuroimage.2016.11.005
|
[18] |
LANCASTER J, LORENZ R, LEECH R, et al. Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction[J]. Frontiers in Aging Neuroscience, 2018, 10: 28. doi: 10.3389/fnagi.2018.00028
|
[19] |
LAKHANI C M, TIERNEY B T, MANRAI A K, et al. Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes[J]. Nature Genetics, 2019, 51(2): 327-334. doi: 10.1038/s41588-018-0313-7
|
[20] |
吴玉超, 林岚, 宋爽, 等. 载脂蛋白E基因与脑皮层厚度变化的研究[J]. 生命科学仪器, 2019, 17(2): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SBKY201902005.htm
WU Y C, LIN L, SONG S, et al. The research of the relationship between ApoE gene and cortical thickness[J]. Life Science Instruments, 2019, 17(2): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBKY201902005.htm
|
[21] |
LÖWE L C, GASER C, FRANKE K, et al. The effect of the ApoE genotype on individual BrainAGE in normal aging, mild cognitive impairment, and Alzheimer's disease[J]. PLoS One, 2016, 11(7): e0157514. doi: 10.1371/journal.pone.0157514
|
[22] |
GLORIOSO C A, PFENNING A R, LEE S S, et al. Rate of brain aging and ApoE ε4 are synergistic risk factors for Alzheimer's disease[J]. Life Science Alliance, 2019, 2(3): e201900303. doi: 10.26508/lsa.201900303
|
[23] |
GIEDD J N, LALONDE F M, CELANO M J, et al. Anatomical brain magnetic resonance imaging of typically developing children and adolescents[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 2009, 48(5): 465-470. http://www.ncbi.nlm.nih.gov/pubmed/19395901
|
[24] |
PAUS T, KESHAVAN M, GIEDD J N. Why do many psychiatric disorders emerge during adolescence?[J]. Neuroscience, 2008, 9(12): 947-957. http://www.nature.com/articles/nrn2513
|
[25] |
FRANKE K, LUDERS E, MAY A, et al. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI[J]. NeuroImage, 2012, 63(3): 1305-1312. doi: 10.1016/j.neuroimage.2012.08.001
|
[26] |
FRANKE K, GASER C, ROSEBOOM T J, et al. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation[J]. NeuroImage, 2018, 173: 460-471. doi: 10.1016/j.neuroimage.2017.10.047
|
[27] |
COLE J H, LEECH R, SHARP D J. Prediction of brain age suggests accelerated atrophy after traumatic brain injury[J]. Annals of Neurology, 2015, 77(4): 571-581. doi: 10.1002/ana.24367
|
[28] |
PARDOE H R, COLE J H, BLACKMON K, et al. Structural brain changes in medically refractory focal epilepsy resemble premature brain aging[J]. Epilepsy Research, 2017, 133: 28-32. doi: 10.1016/j.eplepsyres.2017.03.007
|
[29] |
COLE J H, UNDERWOOD J, CAAN M W, et al. Increased brain-predicted aging in treated HIV disease[J]. Neurology, 2017, 88(14): 1349-1357. doi: 10.1212/WNL.0000000000003790
|
[30] |
FRANKE K, GASER C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer's disease[J]. The Journal of Gerontopsychology and Geriatric Psychiatry, 2012, 25(4): 235-245. http://psycnet.apa.org/journals/gro/25/4/235/
|
[31] |
GASER C, FRANKE K, KLÖPPEL S, et al. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease[J]. PLoS One, 2013, 8(6): e67346. doi: 10.1371/journal.pone.0067346
|
[32] |
KOUTSOULERIS N, DAVATZIKOS C, BORGWARDT S, et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders[J]. Schizophrenia Bulletin, 2014, 40(5): 1140-1153. doi: 10.1093/schbul/sbt142
|
[33] |
NENADIĆ I, DIETZEK M, LANGBEIN K, et al. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder[J]. Psychiatry Research: Neuroimaging, 2017, 266: 86-89. doi: 10.1016/j.pscychresns.2017.05.006
|
[34] |
林岚, 靳聪, 付振荣, 等. 健康老年人脑年龄预测: 基于尺度子配置模型的大脑连接组分析[J]. 北京工业大学学报, 2015, 41(6): 955-960. doi: 10.11936/bjutxb2014090040
LIN L, JIN C, FU Z R, et al. Estimation of the healthy subjects BrainAGE: scaled subprofile modeling with connectome analysis[J]. Journal of Beijing University of Technology, 2015, 41(6): 955-960. (in Chinese) doi: 10.11936/bjutxb2014090040
|
[35] |
林岚, 张柏雯, 付振荣, 等. 高血压对大脑年龄估值差的影响[J]. 中国医疗设备, 2015, 30(6): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201506003.htm
LIN L, ZHANG B W, FU Z R, et al. Advanced BrainAGE in elder adults with hypertension[J]. China Medical Devices, 2015, 30(6): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201506003.htm
|
[36] |
FRANKE K, GASER C, MANOR B, et al. Advanced BrainAGE in older adults with type 2 diabetes mellitus[J]. Front Aging Neurosci, 2013, 5: 90. http://europepmc.org/articles/PMC3865444/
|
[37] |
林岚, 张柏雯, 吴水才. 脑年龄估值差对健康老龄大脑认知储备的定量分析[J]. 中国医疗设备, 2016, 31(12): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201612003.htm
LIN L, ZHANG B W, WU S C. Quantitative analysis of cognitive reserve of the healthy elder brain based on BrainAGE[J]. China Medical Devices, 2016, 31(12): 10-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201612003.htm
|
[38] |
林岚, 张柏雯, 王婧璇, 等. 认知储备在大脑老化中的研究进展[J]. 医疗卫生装备, 2017, 38(9): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201709050.htm
LIN L, ZHANG B W, WANG J X, et al. Research advance of cognitive reserve in brain aging[J]. Chinese Medical Equipment Journal, 2017, 38(9): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201709050.htm
|
[39] |
ROGENMOSER L, KERNBACH J, SCHLAUG G, et al. Keeping brains young with making music[J]. Brain Structure and Function, 2018, 223(1): 297-305. doi: 10.1007/s00429-017-1491-2
|
[40] |
LUDERS E, CHERBUIN N, GASER C. Estimating brain age using high-resolution pattern recognition: younger brains in long-term meditation practitioners[J]. NeuroImage, 2016, 134: 508-513. doi: 10.1016/j.neuroimage.2016.04.007
|
[41] |
田苗, 林岚, 王婧璇, 等. 丰富环境刺激对小鼠脑认知储备影响的定量研究[J]. 医疗卫生装备, 2017, 38(9): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201709027.htm
TIAN M, LIN L, WANG J X, et al. Quantitative study on effect of enriched environmental stimulation on mouse brain cognitive reserve[J]. Chinese Medical Equipment Journal, 2017, 38(9): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201709027.htm
|
[42] |
FRANKE K, HAGEMANN G, SCHLEUSSNER E, et al. Changes of individual BrainAGE during the course of the menstrual cycle[J]. NeuroImage, 2015, 115: 1-6. doi: 10.1016/j.neuroimage.2015.04.036
|
[43] |
LUDERS E, GINGNELL M, POROMAA I S, et al. Potential brain age reversal after pregnancy: younger brains at 4-6 weeks postpartum[J]. Neuroscience, 2018, 386: 309-314. doi: 10.1016/j.neuroscience.2018.07.006
|
[44] |
LE T T, KUPLICKI R, YEH H W, et al. Effect of ibuprofen on BrainAGE: a randomized, placebo-controlled, dose-response exploratory study[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3(10): 836-843. doi: 10.1016/j.bpsc.2018.05.002
|
[45] |
MILLER K L, ALFARO-ALMAGRO F, BANGERTER N K, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study[J]. Nature Neuroscience, 2016, 19(11): 1523-1536. doi: 10.1038/nn.4393
|
[1] | MIAO Yang, ZHANG Shuo, CHEN Jun, ZHANG Xiwei, AN Changming, HUANG Zehao, HAN Lei, RAN Dongsheng, LIU Haibin. Review of Medical Images Analysis of Hypopharyngeal Cancer Based on Convolutional Neural Network[J]. Journal of Beijing University of Technology, 2024, 50(7): 883-896. DOI: 10.11936/bjutxb2022110001 |
[2] | ZHANG Xiaofei, YANG Yang, ZHONG Ning. Local Morphological Differentiation Between Left and Right Functional Brain Network Under Visual Word Recognition Task[J]. Journal of Beijing University of Technology, 2022, 48(7): 773-782. DOI: 10.11936/bjutxb2021020008 |
[3] | LIN Lan, SHEN Xiaoqi. Research Progress of Three-dimensional Convolutional Neural Network Based on Structural Magnetic Resonance Image Analysis in AD Classification[J]. Journal of Beijing University of Technology, 2021, 47(12): 1403-1412. DOI: 10.11936/bjutxb2020050001 |
[4] | YANG Chunlan, CHU Tongpeng, WU Shuicai. Research Progress of Hippocampus Automatic Segmentation Algorithm in MRI Brain Image[J]. Journal of Beijing University of Technology, 2018, 44(4): 636-640. DOI: 10.11936/bjutxb2017030021 |
[5] | LIN Lan, ZHANG Baiwen, JIN Cong, WU Shuicai. Selection of Parcellation Atlas in DTI Brain Connectome Analysis[J]. Journal of Beijing University of Technology, 2018, 44(4): 617-626. DOI: 10.11936/bjutxb2017020037 |
[6] | ZHANG Rongguo, GAO Jingya, LI Fuping, LIU Xiaojun. Human Brain MR Image Segmentation Based on Level Set Method[J]. Journal of Beijing University of Technology, 2017, 43(2): 244-250. DOI: 10.11936/bjutxb2016050082 |
[7] | ZHANG Yajun. Motion Artifacts Reduction Algorithm Application for 4D MR Images[J]. Journal of Beijing University of Technology, 2016, 42(7): 1024-1028. DOI: 10.11936/bjutxb2015090057 |
[8] | WANG Yi, XIE Kun, ZHOU Yan-juan, CUI Wen-chao, LEI Tao, FAN Yang-yu. Graph Cut Based Algorithm for Corpus Callosum Segmentation From Diffusion Tensor Images[J]. Journal of Beijing University of Technology, 2014, 40(3): 473-480. |
[9] | HU Ling-jing, LI Xin, XIA Hong, WANG Lei, JIANG Gui-lian, ZHOU Xiao-xia, TONG Long-zheng. 3D Texture Analysis of Hippocampus Based on MR Images in Patients With Alzheimer Disease and Mild Cognitive Impairment[J]. Journal of Beijing University of Technology, 2012, 38(6): 942-948. |
[10] | WU Shui-cai, JIANG Pei-jie, YANG Chun-lan, RUAN Xiang-yan. Automatic Fat Segmentation Method on Thigh MRI[J]. Journal of Beijing University of Technology, 2012, 38(2): 310-315. |
1. |
熊敏,张格,康文杰,林岚. 基于图卷积网络的大脑年龄预测方法研究. 医疗卫生装备. 2023(03): 1-7 .
![]() | |
2. |
熊敏,林岚,金悦,吴水才. 基于多模态神经影像的脑年龄估值差的综合研究. 医疗卫生装备. 2023(07): 7-13 .
![]() | |
3. |
熊敏,康文杰,林岚. 基于深度卷积生成对抗网络的大脑年龄预测方法研究. 医疗卫生装备. 2023(12): 1-6 .
![]() | |
4. |
金悦,林岚,熊敏,吴水才. 基于功能磁共振成像的认知储备在脑老化过程中的研究综述. 医疗卫生装备. 2022(04): 82-87 .
![]() | |
5. |
林岚,金悦,吴水才. 成功认知老化的研究综述. 中国医疗设备. 2022(05): 150-156 .
![]() | |
6. |
林岚,熊敏,金悦,吴水才. 脑老化过程中认知储备的神经影像学研究回顾. 北京工业大学学报. 2022(07): 794-804 .
![]() | |
7. |
林岚,熊敏,吴水才. 英国生物银行在神经影像领域应用的研究综述. 生物医学工程学杂志. 2021(03): 594-601 .
![]() |