Citation: | WU Shan, CHENG Yulin, HOU Benwei, LI Huayu, LI Jun. Influence of Model Parameter Uncertainty on the Evaluation of Function State of Drainage Network[J]. Journal of Beijing University of Technology, 2021, 47(3): 280-292. DOI: 10.11936/bjutxb2019100004 |
The uncertainty of hydraulic model parameters of drainage network comes from the randomness in the spatial and temporal distribution of rainfall, the complexity of underlying surface and the uncertainty in the process of design, construction and use of pipeline network. To explore the influence of parameter uncertainty on functional state evaluation of nodes and pipelines, an uncertainty analysis model was established by considering the uncertain parameters in the process of precipitation, runoff, flow, and hydrodynamic calculation of pipeline network. According to the parameters in the modeling process and the reviews from literatures, fourteen parameters in the modeling process of SWMM model were selected as the uncertainty parameters in this study. The parameter sensitivity analysis was performed by analyzing the influence to the simulation results of the hydraulic model by the increment analysis of model parameters. Five sensitive parameters were selected for the uncertainty analysis of the hydraulic model of the drainage system. Based on the SWMM simulation engine, Monte Carlo simulation method was used to calculate the failure probability of nodes and pipelines, as well as the corresponding estimators and variation coefficients of the occur time and volume of node overflow, and the fullness degree of pipes. The difference between the certainty model and the uncertainty model was analyzed by comparing the hydraulic simulation results of nodes and pipes. Case study results show that the process of rainfall input and model calculation is greatly influenced by the uncertainty of parameters. It is necessary to consider the uncertainty of parameters in the whole process of hydraulic models of the drainage system. Compared to the certainty condition, the uncertainty analysis model is capable of identifying the nodes and pipes at high risk of failure. For the nodes and pipes with high failure probability identified in the uncertainty model, the relative difference between the uncertainty results and the average value of the certainty results of the occur time and volume for node overflow comes up to 29.13% and 10.41%, respectively, and the max relative difference for the fullness degree of pipes is 22.31%.
[1] |
朱理铭. 水力模型在城市排水(雨水)防涝综合规划中的应用[J]. 中国给水排水, 2014, 30(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201408003.htm
ZHU L M. Application of hydraulic model in comprehenisve planning of urban drainage (rainwater) and water-logging prevention[J]. China Water & Wastewater, 2014, 30(8): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201408003.htm
|
[2] |
ARONICA G, FRENI G, OLIVERI E. On the influence of rainfall time resolution for the analysis of urban drainage systems[C/OL]//EGS General Assembly Conference.[2019-09-13]. https://www.cosis.net/members/meetings/abstracts/file.php/1/2890/pdf/EGS02-A-02507.pdf.
|
[3] |
GALLAGHER M R, DOHERTY J. Parameter interdependence and uncertainty induced by lumping in a hydrologic model[J]. Water Resources Research, 2007, 43(5): 690-701. doi: 10.1029/2006WR005347/full
|
[4] |
周玉文, 李振华, 曹丽虹, 等. 排水管网可靠性计算基础[J]. 沈阳建筑工程学院学报, 1998, 14(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ802.000.htm
ZHOU Y W, LI Z H, CAO L H, et al. Reliability calculation base of drainage pipe line[J]. Journal of Shenyang Architectural and Civil Engineering Institute, 1998, 14(2): 105-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ802.000.htm
|
[5] |
贡金鑫, 魏巍巍. 工程结构可靠性设计原理[M]. 北京: 机械工业出版社, 2007: 31-33.
|
[6] |
TUNG Y K, YEN B C. Hydrosystems engineering uncertainty analysis[M]. New York: McGraw-Hill, 2005: 1-285.
|
[7] |
REFSGAARD J C, VAN DER SLUIJS J P, HØJBERG A L, et al. Uncertainty in the environmental modelling process-a framework and guidance[J]. Environmental Modelling & Software, 2007, 22(11): 1543-1556. http://www.sciencedirect.com/science/article/pii/S1364815207000266
|
[8] |
DELETIC A, DOTTO C B S, MCCARTHY D T, et al. Assessing uncertainties in urban drainage models[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 42: 3-10. http://www.sciencedirect.com/science/article/pii/S1474706511000623
|
[9] |
张子贤, 王瑞恩. 雨水管道水力设计的可靠性计算[J]. 给水排水, 1999, 25(6): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS906.008.htm
ZHANG Z X, WANG R E. On the reliability of hydraulic calculation of storm sewer[J]. Water & Wastewater Engineering, 1999, 25(6): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS906.008.htm
|
[10] |
李芊, 张明媛, 袁永博. SWMM和蒙特卡罗法的雨水管网节点可靠性分析[J]. 辽宁工程技术大学学报(自然科学版), 2017, 36(11): 1172-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201711010.htm
LI Q, ZHANG M Y, YUAN Y B. Reliability research of nodes in rainwater pipeline network based on SWMM and Monte-Carlo Method[J]. Journal of Liaoning Technical University(Natural Science), 2017, 36(11): 1172-1177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201711010.htm
|
[11] |
THORNDAHL S, WILLEMS P. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series[J]. Water Research, 2008, 42(1/2): 455-466. http://www.ncbi.nlm.nih.gov/pubmed/17719076
|
[12] |
DOTTO C B S, KLEIDORFER M, DELETIC A, et al. Impacts of measured data uncertainty on urban stormwater models[J]. Journal of Hydrology, 2014, 508: 28-42. doi: 10.1016/j.jhydrol.2013.10.025
|
[13] |
GOURI R L, SRINIVAS V V. Reliability assessment of a storm water drain network[J]. Aquatic Procedia, 2015, 4: 772-779. doi: 10.1016/j.aqpro.2015.02.160
|
[14] |
TUNG Y K. Effect of uncertainties on probabilistic-based design capacity of hydrosystems[J]. Journal of Hydrology, 2018, 557: 851-867. doi: 10.1016/j.jhydrol.2017.12.059
|
[15] |
王磊. 基于模型的城市排水管网积水灾害评价与防治研究[D]. 北京: 北京工业大学, 2010.
WANG L. The research on urban drainage network inundation evalution and control based on modeling technology[D]. Beijing: Beijing University of Technology, 2010. (in Chinese)
|
[16] |
李芊. 基于SWMM的城市雨水管网可靠性分析以及多目标改建优化研究[D]. 大连: 大连理工大学, 2016.
LI Q. Reliability analysis and multi-objective reconstruction optimization of rainwater pipeline network based on SWMM[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
|
[17] |
李俊, 吴珊, 赵昕, 等. 雨型选择对LID措施效果影响的分析探讨[J]. 给水排水, 2018, 44(5): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201805005.htm
LI J, WU S, ZHAN X, et al. Analysis on the effect of rain type selection on LID measures[J]. Water & Wastewater Engineering, 2018, 44(5): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201805005.htm
|
[18] |
史蓉, 庞博, 赵刚, 等. SWMM模型在城市暴雨洪水模拟中的参数敏感性分析[J]. 北京师范大学学报(自然科学版), 2014, 50(5): 456-460. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201405005.htm
SHI R, PANG B, ZHAO G, et al. Analyzing parameter sensitivity for the SWMM model in urban storm water simulation[J]. Journal of Beijing Normal University (Natural Science), 2014, 50(5): 456-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201405005.htm
|
[19] |
周晓喜. 城市雨水管网模型参数优化及应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHOU X X. Research on parameter optimization and application of urban stormwater pipe network model[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[20] |
熊剑智. 城市雨洪模型参数敏感性分析与率定[D]. 济南: 山东大学, 2016.
XIONG J Z. Urban stormwater model parameter sensitivity analysis and calibration[D]. Jinan: Shandong University, 2016. (in Chinese)
|
[21] |
LI C, WANG W, XIONG J, et al. Sensitivity analysis for urban drainage modeling using mutual information[J]. Entropy, 2014, 16(11): 5738-5752. doi: 10.3390/e16115738
|
[22] |
中华人民共和国住房和城乡建设部. 室外排水设计规范: GB 50014-2006[S]. 北京: 中国计划出版社, 2014: 20-25.
|
[23] |
ROSSMAN L A. Storm water management model user's manual version 5.1[M/OL].[2019-05-08].https://www.epa.gov/water-research/storm-water-management-model-swmm.
|
[24] |
周云峰, 周永潮, 郑春华, 等. 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报(工学版), 2019, 53(2): 347-354. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201902018.htm
ZHOU Y F, ZHOU Y C, ZHENG C H, et al. Sensitivity analysis of parameters of storm water management model with Sobol method[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 347-354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201902018.htm
|
[25] |
VEZZARO L, MIKKELSEN P S, DELETIC A, et al. Urban drainage models-simplifying uncertainty analysis for practitioners[J]. Water Science and Technology, 2013, 68(10): 2136-2143. doi: 10.2166/wst.2013.460
|
[26] |
KORVING H, GELDER P V, NOORTWIJK J V, et al. Influence of model parameter uncertainties on decision-making for sewer system management[J]. Hydroinformatics, 2002(7): 1361-1366. http://www.researchgate.net/publication/228689264_Influence_of_model_parameter_uncertainties_on_decision-making_for_sewer_system_management/download
|
[27] |
SUN N, HONG B, HALL M. Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed[J]. Hydrological Processes, 2014, 28(6): 3018-3034. doi: 10.1002/hyp.9869
|
[28] |
赵子成, 禹华谦. 基于节点的既有雨水管网系统可靠度研究[J]. 重庆交通大学学报(自然科学版), 2012, 31(6): 1264-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201206041.htm
ZHAO Z C, YU H Q. Reliability research based on node of existing sewer system[J]. Journal of Chongqing Jiaotong University(Natural Science), 2012, 31(6): 1264-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201206041.htm
|
[29] |
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 3版. 北京: 高等教育出版社, 2001: 329-354.
|