Citation: | ZHANG Hongguang, ZHAO Rui, TIAN Yaming, YANG Yuxin. Development of Organic Rankine Cycle (ORC) Waste Heat Recovery for Vehicle Engines[J]. Journal of Beijing University of Technology, 2019, 45(11): 1115-1124. DOI: 10.11936/bjutxb2019050029 |
Organic Rankine cycle (ORC) technology can convert the exhaust heat energy from engines into mechanical energy or electrical power efficiently to improve the efficiency of vehicle engines. In this paper, the development of ORC waste heat recovery technology for vehicle engines was studied, with a focus on numerical simulations, control strategy and key components (expander, heat exchanger and pump). The future development and prospect were also put forward. Results show that recovering exhaust heat energy from vehicle engines by the ORC system has a broader development perspective. However, at present, the dynamic matching characteristics of the vehicle engine and ORC system under working conditions, three-dimensional simulation and experimental test of ORC waste heat recovery system for vehicle engines, and optimum design of key components suitable for the system, etc., still need further research. The development of high performance components, highly integrated experiment and simulation, and intelligent control strategy of the ORC waste heat recovery system for vehicle engines will be the prevailing trend.
[1] |
XI H, LI M J, XU C, et al. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm[J]. Energy, 2013, 58:473-482. doi: 10.1016/j.energy.2013.06.039
|
[2] |
HUNG T C, SHAI T Y, WANG S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7):661-667. doi: 10.1016/S0360-5442(96)00165-X
|
[3] |
王恩华.车用有机朗肯底循环系统研究[D].北京: 北京工业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10005-1013047169.htm
WANG E H. Performance study of a bottoming organic Rankine cycle for waste heat recovery of automotive engine[D]. Beijing: Beijing University of Technology, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10005-1013047169.htm
|
[4] |
YANG X F, XU J L, ZHENG M, et al. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques[J]. Energy, 2015, 90:864-878. doi: 10.1016/j.energy.2015.07.121
|
[5] |
HOSSAIN S N, BARI S. Waste heat recovery from the exhaust of a diesel generator using Rankine cycle[J]. Energy Conversion and Management, 2013, 75:141-151. doi: 10.1016/j.enconman.2013.06.009
|
[6] |
BALA E J, O'CALLAGHAN P W, PROBERT S D. Influence of organic working fluids on the performance of a positive-displacement pump with sliding vanes[J]. Applied Energy, 1985, 20(2):153-159. http://cn.bing.com/academic/profile?id=eca5f76999d0fe8452242cca571f15f1&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
MEINEL D, WIELAND C, SPLIETHOFF H. Effect and comparison of different working fluids on a two-stage organic Rankine cycle (ORC) concept[J]. Applied Thermal Engineering, 2014, 63(1):246-253. doi: 10.1016/j.applthermaleng.2013.11.016
|
[8] |
张红光, 王宏进, 杨凯, 等.基于双有机朗肯循环的柴油机余热回收系统性能分析[J].北京工业大学学报, 2015, 41(8):1240-1246. http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201508020
ZHANG H G, WANG H J, YANG K, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle system for diesel engine[J]. Journal of Beijing University of Technology, 2015, 41(8):1240-1246. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201508020
|
[9] |
USMAN M, IMRAN M, YANG Y M, et al. Impact of organic Rankine cycle system installation on light duty vehicle considering both positive and negative aspects[J]. Energy Conversion and Management, 2016, 112:382-394. doi: 10.1016/j.enconman.2016.01.044
|
[10] |
BORETTI A A. Transient operation of internal combustion engines with Rankine waste heat recovery systems[J]. Applied Thermal Engineering, 2012, 48(1):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ccd8c9ffe010cdd4ef1b3db15d7f1f0
|
[11] |
ZHAO M, WEI M S, SONG P P, et al. Performance evaluation of a diesel engine integrated with ORC system[J]. Applied Thermal Engineering, 2017, 115:221-228. doi: 10.1016/j.applthermaleng.2016.12.065
|
[12] |
王涤非.基于朗肯循环废气余热回收技术的研究[D].长春: 吉林大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013193988.htm
WANG D F. Research on technology of waste head recovery based on the Rankine cycle[D]. Changchun: Jilin University, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1013193988.htm
|
[13] |
史磊, 魏名山, 张传明.车用内燃机有机朗肯循环余热回收技术国内外研究现状[C/OL]//全国热力学分析与节能学术会议论文集, 北京, 2011: 1-7[2019-04-30].http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7704362.
SHI L, WEI M S, ZHANG C M. Review of waste heat recovery with organic Rankine cycle for internal combustion engine[C]//National Symposium on Thermodynamic Analysis and Energy Conservation, Beijing, 2011: 1-7[2019-04-30]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7704362.(in Chinese)
|
[14] |
倪佳鑫, 张莹, 邓帅, 等.有机朗肯循环系统动态响应分析[J].机械工程学报, 2017, 53(22):190-197. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201722025
NI J X, ZHANG Y, DENG S, et al. Dynamic simulation of an organic Rankine cycle system[J]. Journal of Mechanical Engineering, 2017, 53(22):190-197. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201722025
|
[15] |
XU B, RATHOD D, KULKARNI S, et al. Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications[J]. Applied Energy, 2017, 205:260-279. doi: 10.1016/j.apenergy.2017.07.038
|
[16] |
TIAN G H, ZHANG Y, ROSKILLY T. Semi-dynamic simulation of ORC based diesel engine WHR system[J]. Energy Procedia, 2014, 61:695-699. doi: 10.1016/j.egypro.2014.11.945
|
[17] |
VAJA I. Definition of an object oriented library for the dynamic simulation of advanced energy systems: methodologies, tools and application to combined ICE-ORC power plants[D]. di Parma: Universita di Parma, 2009.
|
[18] |
ZHANG J F, HE Y L, TAO W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles-Part Ⅱ:simulation results of periodic model and comparison between continuous and noncontinuous helical baffles[J]. International Journal of Heat & Mass Transfer, 2009, 52(23):5381-5389.
|
[19] |
张龙平.车用柴油机瞬变工况性能劣变及其控制策略研究[D].长春: 吉林大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015587899.htm
ZHANG L P. Investigation of performance deterioration and control strategy of automotive diesel engine under transient operation conditions[D]. Changchun: Jilin University, 2015. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1015587899.htm
|
[20] |
杨灿.柴油机朗肯循环余热回收系统动态耦合效应及能效优化策略[D].天津: 天津大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10056-1017134111.htm
YANG C. Overall efficiency optimization of the Rankine cycle system for exhaust heat recovery from vehicle diesel engines considering the dynamic coupling effects[D]. Tianjin: Tianjin University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1017134111.htm
|
[21] |
QUOILIN S, AUMANN R, GRILL A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles[J]. Applied Energy, 2011, 88(6):2183-2190. doi: 10.1016/j.apenergy.2011.01.015
|
[22] |
XIE H, YANG C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle[J]. Applied Energy, 2013, 112:130-141. doi: 10.1016/j.apenergy.2013.05.071
|
[23] |
SHU G Q, LI X Y, TIAN H, et al. Design condition and operating strategy analysis of CO2 transcritical waste heat recovery system for engine with variable operating conditions[J]. Energy Conversion and Management, 2017, 142:188-199. doi: 10.1016/j.enconman.2017.02.067
|
[24] |
FERU E, WILLEMS F, JAGER B D, et al. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines[J]. Energies, 2014, 7:6571-6592. doi: 10.3390/en7106571
|
[25] |
宋松松.车用内燃机-有机朗肯循环联合系统的集成仿真与运行模式研究[D].北京: 北京工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10005-1018705249.htm
SONG S S. Study on integrated simulation and running mode of vehicle engine-organic Ranhine cycle combined system[D]. Beijing: Beijing University of Technology, 2017. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10005-1018705249.htm
|
[26] |
BADAMI M, MURA M. Preliminary design and controlling strategies of a small-scale wood waste Rankine cycle (RC) with a reciprocating steam engine (SE)[J]. Energy, 2009, 34(9):1315-1324. doi: 10.1016/j.energy.2009.04.031
|
[27] |
PAPES I, DEGROOTE J, VIERENDEELS J. New insights in twin screw expander performance for small scale ORC systems from 3D CFD analysis[J]. Applied Thermal Engineering, 2015, 91:535-546. doi: 10.1016/j.applthermaleng.2015.08.034
|
[28] |
MENG F X, ZHANG H G, YANG F B, et al. Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application[J]. Applied Thermal Engineering, 2017, 110:779-786. doi: 10.1016/j.applthermaleng.2016.08.226
|
[29] |
HU K Y, ZHU J L, ZHANG W, et al. Effects of evaporator superheat on system operation stability of an organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 111:793-801. doi: 10.1016/j.applthermaleng.2016.09.177
|
[30] |
SONG P P, WEI M S, LIU Z, et al. Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach[J]. Applied Energy, 2015, 150:274-285. doi: 10.1016/j.apenergy.2015.04.046
|
[31] |
QIU G Q, LIU H, RIFFAT S. Expanders for micro-CHP systems with organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31(16):3301-3307. doi: 10.1016/j.applthermaleng.2011.06.008
|
[32] |
CHAMMAS R E, CLODIC D. Combined cycle for hybrid vehicles[J]. SAE Technical Paper, 2005-01-1171.
|
[33] |
IMRAN M, USMAN M, PARK B S, et al. Volumetric expanders for low grade heat and waste heat recovery applications[J]. Renewable & Sustainable Energy Reviews, 2016, 57:1090-1109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa1a24805a29a3f2a2e84873bef9d7fb
|
[34] |
冯黎明, 高文志, 秦浩, 等.用于发动机余热回收的往复活塞式膨胀机热力学分析[J].天津大学学报, 2011, 44(8):665-670. doi: 10.3969/j.issn.0493-2137.2011.08.002
FENG L M, GAO W Z, QIN H, et al. Thermodynamic analysis of reciprocating piston expander used to recover waste heat of engine[J]. Journal of Tianjin University, 2011, 44(8):665-670. (in Chinese) doi: 10.3969/j.issn.0493-2137.2011.08.002
|
[35] |
LI G S, ZHANG H G, YANG F B, et al. Preliminary development of a free piston expander-linear generator for small-scale organic Rankine cycle (ORC) waste heat recovery system[J]. Energies, 2016, 9(4):300-317. doi: 10.3390/en9040300
|
[36] |
MATHIAS J A, JOHNSTON J R, CAO J, et al. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an organic Rankine cycle[J]. Journal of Energy Resources Technology, 2009, 131(1):012201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1fb11da1b3494f07506452af0f21b8b
|
[37] |
杨婧烨, 孙子扬, 陆冰清, 等.全封闭式涡旋膨胀机在车用有机朗肯循环中的特性研究[J].制冷学报, 2018, 39(4):106-110. doi: 10.3969/j.issn.0253-4339.2018.04.106
YANG J Y, SUN Z Y, LU B Q, et al. Parametric research on hermetic scroll expander integrated into vehicle organic Rankine cycle power plant system[J]. Journal of Refrigeration, 2018, 39(4):106-110. (in Chinese) doi: 10.3969/j.issn.0253-4339.2018.04.106
|
[38] |
ZHANG Y Q, WU Y T, XIA G D, et al. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine[J]. Energy, 2014, 77:499-508. doi: 10.1016/j.energy.2014.09.034
|
[39] |
张红光, 刘彬, 陈研, 等.基于单螺杆膨胀机的发动机排气余热回收系统[J].农业机械学报, 2012, 43(5):27-31. doi: 10.6041/j.issn.1000-1298.2012.05.005
ZHANG H G, LIU B, CHEN Y, et al. Engine waste heat recovery based on single screw expander[J]. Transactions of the Chinese Society for Agricultural, 2012, 43(5):27-31. (in Chinese) doi: 10.6041/j.issn.1000-1298.2012.05.005
|
[40] |
CIPOLLONE R, BIANCHI G, GUALTIERI A, et al. Development of an organic Rankine cycle system for exhaust energy recovery in internal combustion engines[C]//Journal of Physics: Conference Series, 2015, 655: 012015.
|
[41] |
BAO J J, ZHAO L. A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2013, 24:325-342. doi: 10.1016/j.rser.2013.03.040
|
[42] |
陈韬.内燃机余热利用有机朗肯循环系统分析研究[D].北京: 清华大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10003-1018876318.htm
CHEN T. Research on the organic Rankine cycle system for the waste heat recovery of internal combustion engine[D]. Beijing: Tsinghua University, 2017. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10003-1018876318.htm
|
[43] |
BARI S, RUBAIYAT S. Additional power generation from the exhaust gas of a diesel engine using ammonia as the working fluid[J]. SAE Technical Paper, 2014-01-0677.
|
[44] |
YANG F B, ZHANG H G, BEI C, et al. Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator[J]. Energy, 2015, 91:128-141. doi: 10.1016/j.energy.2015.08.034
|
[45] |
IMRAN M, USMAN M, PARK B S, et al. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source[J]. Applied Thermal Engineering, 2015, 80:1-9. doi: 10.1016/j.applthermaleng.2015.01.034
|
[46] |
冯黎明.基于朗肯循环的发动机废热回收理论与试验研究[D].天津: 天津大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266399.htm
FENG L M. Theoretical and experimental study of waste heat recovery of engine based on Rankine cycle[D]. Tianjin: Tianjin University, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266399.htm
|
[47] |
MAVRIDOU S, MAVROPOULOS G C, BOURIS D, et al. Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements[J]. Applied Thermal Engineering, 2010, 30(8/9):935-947. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a0d1a96c6e22cfbacb67225ba5775fb
|
[48] |
HATAMI M, GANJI D D, GORJI-BANDPY M. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery[J]. Case Studies in Thermal Engineering, 2014, 4:53-64. doi: 10.1016/j.csite.2014.07.002
|
[49] |
ZHANG H G, WANG E H, FAN B Y. Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery[J]. Energy Conversion and Management, 2013, 65:438-447. doi: 10.1016/j.enconman.2012.09.017
|
[50] |
BARI S, HOSSAIN S N. Design and optimization of compact heat exchangers to be retrofitted into a vehicle for heat recovery from a diesel engine[J]. Procedia Engineering, 2015, 105:472-479. doi: 10.1016/j.proeng.2015.05.077
|
[51] |
KUNDU B, DAS P K. Performance and optimum dimensions of flat fins for tube-and-fin heat exchangers:a generalized analysis[J]. International Journal of Heat and Fluid Flow, 2009, 30(4):658-668. doi: 10.1016/j.ijheatfluidflow.2009.03.016
|
[52] |
张红光, 杨宇鑫, 孟凡骁, 等.有机朗肯循环系统中工质泵的运行性能实验[J].化工学报, 2017, 68(9):3573-3579. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201709031.htm
ZHANG H G, YANG Y X, MENG F X, et al. Experiment on the running performance the working fluid pump for organic Rankine cycle system[J]. CIESC Journal, 2017, 68(9):3573-3579. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201709031.htm
|
[53] |
SONSAREE S, ASAOKA T, JIAJITSAWAT S, et al. A small-scale solar organic Rankine cycle power plant in Thailand:three types of non-concentrating solar collectors[J]. Solar Energy, 2018, 162:541-560. doi: 10.1016/j.solener.2018.01.038
|
[54] |
SHI L F, SHU G Q, TIAN H, et al. A review of modified organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)[J]. Renewable & Sustainable Energy Reviews, 2018, 92:95-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=465a36a38a15c8160aaafeccc1f8df09
|
[55] |
MONDEJAR M, ANDREASEN J, PIEROBON L, et al. A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91:126-151. doi: 10.1016/j.rser.2018.03.074
|
[56] |
PERIS B, NAVARRO-ESBRÍ J, MOLÉS F, et al. Experimental characterization of an organic Rankine cycle (ORC) for micro-scale CHP applications[J]. Applied Thermal Engineering, 2015, 79:1-8. doi: 10.1016/j.applthermaleng.2015.01.020
|
[57] |
KIM D K, LEE J S, KIM J, et al. Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80 C[J]. Applied Energy, 2017, 189:55-65. doi: 10.1016/j.apenergy.2016.12.026
|
[58] |
MATHIAS J A, JOHNSTON J R, CAO J M. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an organic Rankine cycle[J]. Journal of Energy Resources Technology, 2009, 131(1):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1fb11da1b3494f07506452af0f21b8b
|
[59] |
XU W C, ZHANG J Y, ZHAO L, et al. Novel experimental research on the compression process in organic Rankine cycle (ORC)[J]. Energy Conversion & Management, 2017, 137:1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f627342833899b1c5aa9e6474ec0ce28
|
[60] |
孟凡骁.有机朗肯循环系统中工质泵的运行特性研究[D].北京: 北京工业大学, 2017.
MENG F X. Study on the operation performance of working fluid pump for organic Rankine cycle[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
|
[61] |
LANDELLE A, TAUVERON N, REVELLIN R, et al. Performance investigation of reciprocating pump running with organic fluid for organic Rankine cycle[J]. Applied Thermal Engineering, 2016, 113:962-969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dad4db8d23a6bdacccd929d56d99dd46
|
[62] |
YANG Y X, ZHANG H G, XU Y H, et al. Matching and operating characteristics of working fluid pumps with organic Rankine cycle system[J]. Applied Thermal Engineering, 2018, 142:662-631. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc05847682ac9120abbc8a1f5510dfdd
|
[63] |
杨绪飞, 邹景煌, 戚风亮, 等.用于有机朗肯循环的三柱塞泵运行性能实验[J].农业机械学报, 2015, 46(8):367-371. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201508051
YANG X F, ZOU J H, QI F L, et al. Experiment on tri-plunger pump performance in organic Rankine cycle system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8):367-371. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201508051
|
[64] |
叶佳琦, 赵力, 邓帅, 等.小型有机朗肯循环系统中工质泵的效率[J].化工进展, 2016, 35(4):1027-1032. http://d.old.wanfangdata.com.cn/Periodical/hgjz201604010
YE J Q, ZHAO L, DENG S, et al. Efficiency of working fluid pump in a small-scale organic Rankine cycle system[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1027-1032. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hgjz201604010
|
[65] |
MIAO Z, XU J L, YANG X F. Operation and performance of a low temperature organic Rankine cycle[J]. Applied Thermal Engineering, 2015, 75:1065-1075. doi: 10.1016/j.applthermaleng.2014.10.065
|
[1] | ZHANG Hong-guang, WANG Hong-jin, YANG Kai, YANG Fu-bin, SONG Song-song, CHANG Ying, BEI Chen. Performance Analysis of Waste Heat Recovery With a Dual Loop Organic Rankine Cycle System for Diesel Engine[J]. Journal of Beijing University of Technology, 2015, 41(8): 1240-1246. DOI: 10.11936/bjutxb2015010014 |
[2] | LI Hai-tao, LIU Xue-min, JIN Guang, ZHOU Jing-lun. Safety Risk Monitoring Based on Critical State and Crucial Components[J]. Journal of Beijing University of Technology, 2012, 38(12): 1814-1821. |
[3] | ZHANG Hong-guang, LIU Bin, LIANG Hong, CHEN Yan, YANG Kai, WU Yu-ting, WANG Wei. Power System of Diesel Engine Waste Heat Recovery With a ORC System[J]. Journal of Beijing University of Technology, 2012, 38(9): 1431-1435. |
[4] | LIU Xu-dong, FAN Qing-wu, ZHENG Bang-gui, DUAN Jian-min. Design and Simulation of Fuzzy Logic Control Strategy for an SHEV[J]. Journal of Beijing University of Technology, 2012, 38(3): 363-368. |
[5] | ZHANG Cheng-ning, WU Xiao-hua, WANG Zhi-fu, YANG Wen-jing. Control Strategy of Driving Motor During the AMT Shifting on Electric Vehicles[J]. Journal of Beijing University of Technology, 2012, 38(3): 325-329. |
[6] | LI Bing, ZHANG Ding-li. Analysis of Water Inrush Danger of Subsea Tunnel Based on Water Inrush Coefficient of Water-resisting Key Strata[J]. Journal of Beijing University of Technology, 2011, 37(9): 1354-1359. |
[7] | KONG De-hui, WANG Li-chun, ZHENG Zhong-yu. A Key Frame Interpolation Method Enhancing Motion Details of Skeletal Animation[J]. Journal of Beijing University of Technology, 2011, 37(8): 1255-1261. |
[8] | PAN Li-li, ZOU Bei-ji, WANG Tian-e, CHEN Hao. Analysis of the Infeasible Path Based on Key Branch[J]. Journal of Beijing University of Technology, 2010, 36(5): 716-720. |
[9] | FENG Neng-lian, ME Ju-biao, YU Li-ming, ZHOU Da-sen, WANG Shao-lin, HU Zhi-jie. Control Strategy of EV Regenerative Braking[J]. Journal of Beijing University of Technology, 2008, 34(12): 1332-1338. |
[10] | PENG Yong-zhen, MA Yong, WANG Hong-chen, GAN Yi-ping, YANG Xiang-ping. Development and Study of Internal Recirculation Flow Control Strategy in A/O Nitrogen Removal Process[J]. Journal of Beijing University of Technology, 2004, 30(2): 201-206. |