Citation: | WU Shuicai, OUYANG Yali, WU Weiwei, ZHOU Zhuhuang. Detecting Breast Microcalcification Using Time Reversal Ultrasound Imaging: A Simulation Study[J]. Journal of Beijing University of Technology, 2020, 46(9): 1056-1067. DOI: 10.11936/bjutxb2019030001 |
To study the effectiveness of time reversal ultrasound imaging for detecting breast microcalcification, field Ⅱ ultrasound simulation software was used to analyze the influence of relevant parameters on the resolution of time reversal ultrasound imaging. Point scatterers were set to simulate breast microcalcification. The effectiveness of multiple time reversal ultrasound imaging algorithms for detecting breast microcalcification under ideal conditions and different levels of noise was investigated. Either under ideal conditions or under different noise conditions, time reversal ultrasound imaging breaks through the resolution limit of traditional B-mode ultrasound imaging. It can distinguish point scatterers with close distance, effectively suppress noise, while traditional B-mode ultrasound imaging is more sensitive to noise. Time reversal ultrasound imaging can improve the imaging resolution and anti-noise ability of traditional B-mode ultrasound imaging in detecting breast microcalcification. Time reversal with multiple signal classification (TR-MUSIC) imaging can accurately locate point scatterers; however, its axial resolution is low. Phase-coherent with multiple signal classification (PC-MUSIC) improves the axial resolution of TR-MUSIC; however, it cannot accurately locate point scatterers. To achieve super resolution and target localization, phase compensation must be considered in this algorithm.
[1] |
国家癌症中心.中国肿瘤登记工作指导手册[M].北京:人民卫生出版社, 2016:59-75.
|
[2] |
ANDERSON M E, SOO M S, BENTLEY R C, et al. The detection of breast microcalcifications with medical ultrasound[J]. Journal of the Acoustical Society of America, 1997, 101(1):29-39. doi: 10.1121/1.417973
|
[3] |
NAGASHIMA T, HASHIMOTO H, OSHIDA K, et al. Ultrasound demonstration of mammographically detected microcalcifications in patients with ductal carcinomain situ of the breast[J]. Breast Cancer, 2005, 12(3):216-220. https://www.ncbi.nlm.nih.gov/pubmed/16110292
|
[4] |
BASSETT L W. Mammographic analysis of calcifications[J]. Radiologic Clinics of North America, 1992, 30(1):93-105. http://cn.bing.com/academic/profile?id=e8b5d246a9ad89a3870a7141b2b0e8c3&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
CLEVERLEY J R, JACKSON A R, BATEMAN A C. Pre-operative localization of breast microcalcification using high-frequency ultrasound[J]. Clinical Radiology, 1997, 52(12):924-926. doi: 10.1016/S0009-9260(97)80225-5
|
[6] |
OUYANG Y, ZHOU Z, WU W, et al. A review of ultrasound detection methods for breast microcalcification[J]. Mathematical Biosciences and Engineering, 2019, 16(4):1761-1785. doi: 10.3934/mbe.2019085
|
[7] |
HUANG L, SIMONETTI F. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging:a numerical phantom study[J]. Proceedings of SPIE, 2010, 7629(3):42-52. http://cn.bing.com/academic/profile?id=e7bd024bc03e3888b36853000625bf9f&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
MACHADO P, EISENBREY J R, CAVANAUGH B, et al. New image processing technique for evaluating breast microcalcifications:a comparative study[J]. Journal of Ultrasound in Medicine, 2012, 31(6):885-893. doi: 10.7863/jum.2012.31.6.885
|
[9] |
OLSEN O, GØTZSCHE P C. Cochrane review on screening for breast cancer with mammography[J]. Lancet, 2001, 358(9290):1340-1342. doi: 10.1016/S0140-6736(01)06449-2
|
[10] |
THOMASSIN-NAGGARA, TARDIVON A, CHOPIER J. Standardized diagnosis and reporting of breast cancer[J]. Diagnostic and Interventional Imaging, 2014, 95(7/8):759-766. http://cn.bing.com/academic/profile?id=557ba4e8e905d4ed2fbb1d50586b9752&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
FLETCHER S W, BLACK W, HARRIS R, et al. Report of the international workshop on screening for breast cancer[J]. Journal of the National Cancer Institute, 1993, 85(20):1644-1656. doi: 10.1093/jnci/85.20.1644
|
[12] |
DERODE A, ROUX P, FINK M. Robust acoustic time reversal with high-order multiple scattering[J]. Physical Review Letters, 1995, 75(23):4206-4210. doi: 10.1103/PhysRevLett.75.4206
|
[13] |
ROBERT J L, BURCHER M, COHEN-BACRIE C, et al. Time reversal operator decomposition with focused transmission and robustness to speckle noise:application to microcalcification detection[J]. Journal of the Acoustical Society of America, 2006, 119(6):3848-3859. doi: 10.1121/1.2190163
|
[14] |
LAYBED Y, HUANG L. TR-MUSIC inversion of the density and compressibility contrasts of point scatterers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1):16-24. doi: 10.1109/TUFFC.2014.6689772
|
[15] |
THOMAS J L, WU F, FINK M. Time reversal focusing applied to lithotripsy[J]. Ultrasonic Imaging, 1996, 18(2):106-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/016173469601800202
|
[16] |
SANTOS V R N, TEIXEIRA F L. Application of time-reversal-based processing techniques to enhance detection of GPR targets[J]. Journal of Applied Geophysics, 2017, 146:80-94. doi: 10.1016/j.jappgeo.2017.09.004
|
[17] |
吴鹏英, 王强, 范昕炜, 等.基于时间反转MUSIC的奥氏体不锈钢超声成像分析[J].应用声学, 2016, 35(2):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yysx201602002
WU P Y, WANG Q, FAN X W, et al. The ultrasonic inspection of austenitic stainless steels applying the multiple signal classification algorithm[J]. Journal of Applied Acoustics, 2016, 35(2):102-108. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yysx201602002
|
[18] |
DEVANEY A J, MARENGO E A, GRUBER F K. Time-reversal-based imaging and inverse scattering of multiply scattering point targets[J]. The Journal of the Acoustical Society of America, 2005, 118(5):3129-3138. doi: 10.1121/1.2042987
|
[19] |
FINK M, CASSEREAU D, DERODE A, et al. Time-reversed acoustics[J]. Reports on Progress in Physics, 2000, 63(12):1933-1995. doi: 10.1088/0034-4885/63/12/202
|
[20] |
GELIUS L J, ASGEDOM E. Diffraction-limited imaging and beyond-the concept of super resolution[J]. Geophysical Prospecting, 2011, 59(3):400-421. doi: 10.1111/j.1365-2478.2010.00928.x
|
[21] |
LABYED Y, HUANG L. Detecting small targets using windowed time-reversal MUSIC imaging: a phantom study[C]//2011 IEEE International Ultrasonics Symposium. Piscataway: IEEE, 2011: 1579-1582.
|
[22] |
ASGEDOM E G, GELIUS L J, AUSTENG A, et al. Time-reversal multiple signal classification in case of noise:a phase-coherent approach[J]. Journal of the Acoustical Society of America, 2011, 130(4):2024-2034. doi: 10.1121/1.3626526
|
[23] |
FOROOZAN F, SADEGHI P. Super-resolution ultrawideband ultrasound imaging using focused frequency time reversal MUSIC[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2015: 887-891.
|
[24] |
JENSEN J A. Simulation of advanced ultrasound systems using Field Ⅱ[C]//2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Piscataway: IEEE, 2004: 636-639.
|
[25] |
HOLMES C, DRINKWATER B, WILCOX P. The post-processing of ultrasonic array data using the total focusing method[J]. Insight, 2004, 46(11):677-680. doi: 10.1784/insi.46.11.677.52285
|
[26] |
SUTCLIFFE M, WESTON M, DUTTON B, et al. Real-time full matrix capture for ultrasonic non-destructive testing with acceleration of post-processing through graphic hardware[J]. NDT & E International, 2012, 51:16-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28a0250aefe151e7ed55c37702f7e638
|
[27] |
MORSE P M C, INGARD K U. Theoretical acoustics[M]. Princeton:Princeton University Press, 1986:3-26.
|
[28] |
LAYBED Y, HUANG L. Ultrasound time-reversal MUSIC imaging of extended targets[J]. Ultrasound in Medicine & Biology, 2012, 38(11):2018-2030. http://cn.bing.com/academic/profile?id=ad77f98b5109cef2f238236e13996e3a&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
PRADA C, FINK M. Eigenmodes of the time reversal operator:a solution to selective focusing in multiple-target media[J]. Wave Motion, 1994, 20(2):151-163. doi: 10.1016/0165-2125(94)90039-6
|
[30] |
BUNSE-GERSTNER A, GRAGG W B. Singular value decompositions of complex symmetric matrices[J]. Journal of Computational and Applied Mathematics, 1988, 21(1):41-54. http://cn.bing.com/academic/profile?id=cff340fd95302221e11c10a901576552&encoded=0&v=paper_preview&mkt=zh-cn
|
[31] |
PRADA C, THOMAS J L. Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix[J]. Journal of the Acoustical Society of America, 2003, 114(1):235-243. doi: 10.1121/1.1568759
|
[32] |
FAN C, PAN M, LUO F, et al. Multi-frequency time-reversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(12):2067-2074. doi: 10.1109/TUFFC.2014.006574
|
[33] |
FAN C, PAN M, CHEN D, et al. Ultrasonic array time-reversal based super resolution imaging[C]//2014 IEEE Far East Forum on Nondestructive Evaluation/Testing. Piscataway: IEEE, 2014: 69-73.
|
[34] |
GOODMAN J W. Introduction to Fourier optics[M]. Englewood:Roberts and Company Publishers, 2005:20-59.
|
[35] |
SIMONETTI F. Localization of pointlike scatterers in solids with subwavelength resolution[J]. Applied Physics Letters, 2006, 89:09410. http://cn.bing.com/academic/profile?id=9175e1565f62bb61640c0fdb42d7d0fc&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | LI Hongmei, YAN Yinzhou, JIANG Yijian. Microsphere Super-resolution Optical Imaging: Principles, Techniques, and Applications[J]. Journal of Beijing University of Technology, 2025, 51(1): 100-120. DOI: 10.11936/bjutxb2024040005 |
[2] | LIU Pengyu, WANG Congcong, JIA Kebin. Joint Up-and-Down Sampling Super-resolution Framework for Video Transmission Application Services[J]. Journal of Beijing University of Technology, 2021, 47(5): 463-471. DOI: 10.11936/bjutxb2021010001 |
[3] | DU Weinan, HU Yongli, SUN Yanfeng. Image Super-resolution Reconstruction Based on Residual Dictionary Learning[J]. Journal of Beijing University of Technology, 2017, 43(1): 43-48. DOI: 10.11936/bjutxb2016060049 |
[4] | WANG Yun-xin, GUO Sha, WANG Da-yong, RONG Lu, LIN Qiao-wen, WANG Min-chao. Breaking Through the Diffraction Limit Using Far-field Optical Imaging Methods[J]. Journal of Beijing University of Technology, 2015, 41(12): 1799-1809. DOI: 10.11936/bjutxb2015070010 |
[5] | WANG Su-yu, ZHANG Zong-xiang, WANG Bo. Algorithm of Spectral Super-resolution of Hyperspectral Imagery Based on Redundant Dictionary[J]. Journal of Beijing University of Technology, 2015, 41(10): 1522-1527. DOI: 10.11936/bjutxb2015020019 |
[6] | WANG Zhuo-zheng, JIA Ke-bin, LIU Wei. Multi-frame Image Super Resolution Based on Sparse Representation and Matrix Completion[J]. Journal of Beijing University of Technology, 2014, 40(1): 38-42,48. |
[7] | LAN Cheng-dong, CHEN Liang, LU Tao. Facial Super-resolution Reconstruction of Sparse Dictionaries With Posteriors Information[J]. Journal of Beijing University of Technology, 2013, 39(7): 1072-1077. |
[8] | WANG Su-yu, ZHUO Li, SHEN Lan-sun, LI Xiao-guang. A Simple & Effective Video Sequence Super-Resolution Algorithm[J]. Journal of Beijing University of Technology, 2009, 35(6): 742-747. |
[9] | XIAO Chuang-bo, DUAN Juan, YU Jing. POCS Super-resolution Reconstruction From Image Sequences[J]. Journal of Beijing University of Technology, 2009, 35(1): 108-113. |
[10] | Li Zongyong, Sun Jian, Liu Qingjie, Xia Shaojian. On the Energy Resolution for a Double Crystal Monochromator[J]. Journal of Beijing University of Technology, 1993, 19(3): 119-123. |
1. |
庄政,任宏伟,田博文,郑元成,路乾. 基于VMD方法的混凝土缺陷超声成像噪声处理研究. 计算机测量与控制. 2024(03): 247-252 .
![]() |