• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Sinan, ZHANG Yongzheng, BAI Jinquan, ZHAO Minjian, LI Jianrong. Research Progress of Alkali Metal-based Metal-Organic Frameworks[J]. Journal of Beijing University of Technology, 2019, 45(2): 191-208. DOI: 10.11936/bjutxb2018120014
Citation: WANG Sinan, ZHANG Yongzheng, BAI Jinquan, ZHAO Minjian, LI Jianrong. Research Progress of Alkali Metal-based Metal-Organic Frameworks[J]. Journal of Beijing University of Technology, 2019, 45(2): 191-208. DOI: 10.11936/bjutxb2018120014

Research Progress of Alkali Metal-based Metal-Organic Frameworks

More Information
  • Received Date: December 16, 2018
  • Available Online: August 03, 2022
  • Published Date: February 09, 2019
  • The research progress of alkali metal-based metal-organic frameworks (MOFs) in recent years is summarized in this paper. Alkali metal-based MOFs have attracted considerable attention due to their excellent performance in gas adsorption related field. In this review, the synthesis, structure, properties, and potential applications of alkali metal-based MOFs were introduced. Among them, the structure of the MOFs and the research on gas adsorption and storage including H2 and CO2 were emphasized and the gas separation and fluorescence detection were briefly reviewed. In addition, MOFs doped with alkali metal for H2 sorption was also introduced. At the same time, the development trend of alkali metal-based MOFs was prospected.

  • [1]
    OCKWIG N W, DELGADO-FRIEDRICHS O, O'KEEFE M, et al. Reticular chemistry:occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Accounts of Chemical Research, 2005, 38(3):176-182. doi: 10.1021/ar020022l
    [2]
    LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504. doi: 10.1039/b802426j
    [3]
    CHAE H K, SIBERIO-PÉREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527. doi: 10.1038/nature02311
    [4]
    LEE J Y, FARHR O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5):1450-1459. doi: 10.1039/b807080f
    [5]
    FÉREY G. Hybrid porous solids:past, present, future[J]. Chemical Society Reviews, 2008, 37(1):191-214. doi: 10.1039/B618320B
    [6]
    NAVARRO J A, BAREA E, SALAS J M, et al. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers[J]. Inorganic Chemistry, 2006, 45(6):2397-2399. doi: 10.1021/ic060049r
    [7]
    LLEWELLYN P L, MAURIN G, DEVIC T, et al. Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation[J]. Journal of the American Chemical Society, 2008, 130(38):12808-12814. doi: 10.1021/ja803899q
    [8]
    FANG Q R, ZHU G S, XUE M, et al. Microporous metal-organic framework constructed from heptanuclear zinc carboxylate secondary building units[J]. Chemistry-A European Journal, 2006, 12(14):3754-3758. doi: 10.1002/(ISSN)1521-3765
    [9]
    EDDAOUDI M, MOLER D B, LI H, et al. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Accounts of Chemical Research, 2001, 34(4):319-330. doi: 10.1021/ar000034b
    [10]
    TRANCHEMONTAGNE D J, MENDOZA-CORTÉS J L, O'KEEFFE M, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1257-1283. doi: 10.1039/b817735j
    [11]
    CHAMPNESS N R. Coordination frameworks-where next?[J]. Dalton Trans, 2006, 7(7):877-880. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214373644/
    [12]
    DU M, LI C P, LIU C S, et al. Design and construction of coordination polymers with mixed-ligand synthetic strategy[J]. Coordination Chemical Reviews, 2013, 257(7):1282-1305. http://cn.bing.com/academic/profile?id=62184aadd0efca3b4b4ef8a28fdab531&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    LI C P, DU M. Role of solvents in coordination supramolecular systems[J]. Chemical Communications, 2011, 47(21):5958-5972. doi: 10.1039/c1cc10935a
    [14]
    CHEN X D, ZHAO X H, CHEN M, et al. A 3D copper(Ⅱ) coordination framework showing different kinetic and thermodynamic crystal transformations through removal of guest water cubes[J]. Chemistry-A European Journal, 2009, 15(47):12974-12977. doi: 10.1002/chem.v15:47
    [15]
    WU C D, HU A G, ZHANG L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. Journal of the American Chemical Society, 2005, 127(25):8940-8941. doi: 10.1021/ja052431t
    [16]
    MA L, MIHALCIK D J, LIN W. Highly porous and robust 4, 8-connected metal-organic frameworks for hydrogen storage[J]. Journal of the American Chemical Society, 2009, 131(13):4610-4612. doi: 10.1021/ja809590n
    [17]
    WU S, MA L, LONG L S, et al. Three-dimensional metal-organic frameworks based on functionalized tetracarboxylate linkers:synthesis, structures, and gas sorption studies[J]. Inorganic Chemistry, 2009, 48(6):2436-2442. doi: 10.1021/ic801631w
    [18]
    WU C D, MA L Q, LIN W B. Hierarchically ordered homochiral metal-organic frameworks built from exceptionally large rectangles and squares[J]. Inorganic Chemistry, 2008, 47(24):11446-11448. doi: 10.1021/ic800514f
    [19]
    TAYLOR K M, RIETER W J, LIN W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging[J]. Journal of the American Chemical Society, 2008, 130(44):14358-14359. doi: 10.1021/ja803777x
    [20]
    MA L Q, LIN W B. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks[J]. Journal of the American Chemical Society, 2008, 130(42):13834-13835. doi: 10.1021/ja804944r
    [21]
    RAJA D S, LUO J H, YEH C T, et al. Novel alkali and alkaline earth metal coordination polymers based on 1, 4-naphthalenedicarboxylic acid:synthesis, structural characterization and properties[J]. CrystEngComm, 2014, 16(10):1985-1994. doi: 10.1039/c3ce42208a
    [22]
    WU T, ZHANG J, BU X H, et al. Variable lithium coordination modes in two-and three-dimensional lithium boron imidazolate frameworks[J]. Chemistry of Materials, 2009, 21(16):3830-3837. doi: 10.1021/cm9015063
    [23]
    FORSTER P M, BURBANK A R, LIVAGE C, et al. The role of temperature in the synthesis of hybrid inorganic-organic materials:the example of cobalt succinates[J]. Chemical Communications, 2004, 21(4) 368-369. http://cn.bing.com/academic/profile?id=7632d0c830173fc0271738d556a58a65&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    SENKOVSKA I, KASKEL S. Solvent-induced pore-size adjustment in the metal-organic framework[Mg3 (ndc)3(dmf)4] (ndc=naphthalenedicarboxylate)[J]. European Journal of Inorganic Chemistry, 2010, 2006(22):4564-4569. https://www.researchgate.net/publication/229676105_Solvent-Induced_Pore-Size_Adjustment_in_the_Metal-Organic_Framework_Mg3ndc3dmf4_ndc_naphthalenedicarboxylate
    [25]
    GUO F, WANG F, YANG H, et al. Tuning structural topologies of three photoluminescent metal-organic frameworks via isomeric biphenyldicarboxylates[J]. Inorganic Chemistry, 2012, 51(18):9677-9682. doi: 10.1021/ic3008969
    [26]
    FROMM K M. Coordination polymer networks with s-block metal ions[J]. Coordination Chemistry Reviews, 2008, 252(8):856-885. http://cn.bing.com/academic/profile?id=f11fdbe5e8eb896a5f86aeb9576d6bb7&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    BANERJEE D, PARISE J B. Recent advances in s-block metal carboxylate networks[J]. Crystal Growth & Design, 2011, 11(10):4704-4720. http://cn.bing.com/academic/profile?id=31f544374a2368ab59a80ba428485d7e&encoded=0&v=paper_preview&mkt=zh-cn
    [28]
    LIU X, LIU B, CHEN W T, et al. A novel 2-D honeycomb-like lithium coordination polymer containing 42-membered rings[J]. Crystal Growth & Design, 2005, 5(3):841-843.
    [29]
    LIU Y Y, ZHANG Z, XU F, et al. Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules[J]. Crystal Growth & Design, 2008, 8(9):3127-3129. http://cn.bing.com/academic/profile?id=5700525cf8bb41a14c679e16af97a118&encoded=0&v=paper_preview&mkt=zh-cn
    [30]
    BANERJEE D, KIM S J, PARISE J B. Lithium based metal-organic framework with exceptional stability[J]. Crystal Growth & Design, 2009, 9(5):2500-2503. http://cn.bing.com/academic/profile?id=7ee4dc40f657674ea100a92addc98aeb&encoded=0&v=paper_preview&mkt=zh-cn
    [31]
    BANERJEE D, KIM S J, BORKOWSKI L A, et al. Solvothermal synthesis and structural characterization of ultralight metal coordination networks[J]. Crystal Growth & Design, 2010, 10(2):709-715. http://cn.bing.com/academic/profile?id=5aae28decc30a682b4d20f26992dfc22&encoded=0&v=paper_preview&mkt=zh-cn
    [32]
    KIM M K, JO V, LEE D W, et al. CAU-1 and CAU-2:new tubular alkali metal-organic framework materials, A3[C6H3(CO2)(CO2H0.5)(CO2H)]2 (A=K or Rb)[J]. CrystEngComm, 2010, 12(5):1481-1484. doi: 10.1039/b924218j
    [33]
    ZHANG J, CHEN S M, ZINGIRYAN A, et al. Integrated molecular chirality, absolute helicity, and intrinsic chiral topology in three-dimensional open-framework materials[J]. Journal of the American Chemical Society, 2008, 130(51):17246-17247. doi: 10.1021/ja8075692
    [34]
    FRIGOLI M, OSTA R E, MARROT J, et al. Heterobimetallic sodium-lithium based metal-organic framework showing the β-cristobalite topology and having high permanent porosity[J]. European Journal of Inorganic Chemistry, 2013(7):1138-1141.
    [35]
    TOMINAKA S, HENKE S, CHEETHAM A K, et al. Coordination polymers of alkali metal trithiocyanurates:structure determinations and ionic conductivity measurements using single crystals[J]. CrystEngComm, 2013, 15(45):9400-9407. doi: 10.1039/c3ce41150h
    [36]
    HORIKE S, MATSUDA R, TANAKA D, et al. Immobilization of sodium ions on the pore surface of a porous coordination polymer[J]. Journal of the American Chemical Society, 2006, 128(13):4222-4223. doi: 10.1021/ja0606879
    [37]
    CHENG P C, LIN W C, TSENG F S, et al. Syntheses, structures, and properties of multidimensional lithium coordination polymers based on aliphatic carboxylic acids[J]. Dalton Trans, 2013, 42(8):2765-2772. doi: 10.1039/C2DT32424E
    [38]
    RAJA D S, LUO J H, WU C Y, et al. Solvothermal synthesis, structural diversity, and properties of alkali metal-organic frameworks based on V-shaped ligand[J]. Crystal Growth & Design, 2013, 13(8):3785-3793. http://cn.bing.com/academic/profile?id=18b670bf8d1a6d3b367e4b70973e6a75&encoded=0&v=paper_preview&mkt=zh-cn
    [39]
    KASKEL S. The chemistry of metal-organic frameworks:synthesis, characterization, and applications[M]. Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2016, 73-103.
    [40]
    仲崇立, 刘大欢, 阳庆元.金属-有机骨架材料的构效关系及设计[M].北京:科学出版社, 2013:17-23.
    [41]
    ZHAO X, WU T, ZHENG S T, et al. A zeolitic porous lithium-organic framework constructed from cubane clusters[J]. Chemical Communications, 2011, 47(19):5536-5538. doi: 10.1039/c1cc11245g
    [42]
    ZHAO X, WU T, BU X H, et al. A mixed ligand route for the construction of tetrahedrally coordinated porous lithium frameworks[J]. Dalton Trans, 2011, 40(32):8072-8074. doi: 10.1039/c1dt10859j
    [43]
    ZHAO X, WU T, BU X H, et al. Lithium cubane clusters as tetrahedral, square planar, and linear nodes for supramolecular assemblies[J]. Dalton Trans, 2012, 41(14):3902-3905. doi: 10.1039/C1DT11975C
    [44]
    CHEN X T, BU X H, LIN Q P, et al. Organization of lithium cubane clusters into three-dimensional porous frameworks by self-penetration and self-polymerization[J]. Crystal Growth & Design, 2016, 16(11):6531-6536. http://cn.bing.com/academic/profile?id=eb96b21d012ab564418227544dc1c412&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    ALIEV S B, SAMSONENKO D G, RAKHMANOVA M I, et al. Syntheses and structural characterization of lithium carboxylate frameworks and guest-dependent photoluminescence Study[J]. Crystal Growth & Design, 2014, 14(9):4355-4363. http://cn.bing.com/academic/profile?id=72e203733a768036e2b0a367af7daf84&encoded=0&v=paper_preview&mkt=zh-cn
    [46]
    ZHANG Z B, XU C X, YIN L, et al. Synthesis, crystal structure and properties of a new 1D polymeric nitrogen-rich energetic complex {TAG[Li(BTO)(H2O)]}n based on 1H, 1'H-5, 5'-bitetrazole-1, 1'-diolate[J]. RSC Advances, 2016, 6(77):73551-73559. doi: 10.1039/C6RA12649A
    [47]
    ZHANG J, WU T, ZHOU C, et al. Zeolitic boron imidazolate frameworks[J]. Angewandte Chemie International Edition, 2009, 48(14):2542-2545. doi: 10.1002/anie.v48:14
    [48]
    KIM T K, LEE J H, MOON D, et al. Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds:direct observation of interaction sites[J]. Inorganic Chemistry, 2013, 52(2):589-595. http://cn.bing.com/academic/profile?id=b4d32aed819f9f89a6be4d45f92434a1&encoded=0&v=paper_preview&mkt=zh-cn
    [49]
    YANG D L, ZHANG X, YANG J X, et al. Alkali/alkaline earth metal and solvents-regulated construction of novel heterometallic coordination polymers based on a semirigid ligand and tetranuclear metal clusters[J]. Inorganic Chimica Acta, 2014, 423:62-71. doi: 10.1016/j.ica.2014.07.054
    [50]
    CHEN D M, TIAN J Y, LIU C S. A luminescent Li(I)-based metal-organic framework showing selective Fe(Ⅲ) ion and nitro explosive sensing[J]. Inorganic Chemistry Communications, 2016, 68:29-32. doi: 10.1016/j.inoche.2016.03.023
    [51]
    ZIMA V, PATIL D S, RAJA D S, et al. New MOF based on lithium tetrahydrofuran-2, 3, 4, 5-tetracarboxylate:its structure and conductivity behavior[J]. Journal of Solid State Chemistry, 2014, 217:150-158. doi: 10.1016/j.jssc.2014.06.002
    [52]
    LOGVINENKO V A, ALIEV S B, FEDIN V P, et al. Thermal (kinetic) stability of the inclusion compound on the base of Li-contain MOF[Li2(H2 btc)]·dioxane[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(1):53-58. doi: 10.1007/s10973-014-4228-y
    [53]
    CHEN S C, ZHANG Z H, ZHOU Y S, et al. Alkali-metal-templated assemblies of new 3D lead(Ⅱ) tetrachloroterephthalate coordination frameworks[J]. Crystal Growth & Design, 2011, 11(9):4190-4197. doi: 10.1021/cg200785g
    [54]
    WU T, ZANG J, ZHOU C, et al. Zeolite RHO-type net with the lightest elements[J]. Journal of the American Chemical Society, 2009, 131(17):6111-6113. doi: 10.1021/ja901725v
    [55]
    ZHENG S T, LI Y F, WU T, et al. Porous lithium imidazolate frameworks constructed with charge-complementary ligands[J]. Chemistry-A European Journal, 2010, 16(44):13035-13040. doi: 10.1002/chem.201002316
    [56]
    SHA J Q, WU L H, LI S X, et al. Synthesis and structure of new carbohydrate metal-organic frameworks and inclusion complexes[J]. Journal of Molecular Structure, 2015, 1101:14-20. doi: 10.1016/j.molstruc.2015.08.020
    [57]
    WEN H, YANG G S, BAO S J, et al. Oriented design and synthesis of water-stable heterometallic metal-organic frameworks by bridging ligands containing hydrophobic (-CH3) substituents[J]. Inorganic Chemistry Communications, 2015, 61:27-30. doi: 10.1016/j.inoche.2015.05.003
    [58]
    WANG F, WU X Y, YU R M, et al. One-pot synthesis of two high-connected metal-organic frameworks constructed from[Cu2Na2I2]2+ and[Cu6I4]2+clusters and tetrazolate ligand formed in-situ[J]. Inorganic Chemistry Communications, 2012, 25:21-25. doi: 10.1016/j.inoche.2012.08.020
    [59]
    LU H J, YANG X N, LI S X, et al. Study on a new cyclodextrin based metal-organic framework with chiral helices[J]. Inorganic Chemistry Communications, 2015, 61:48-52. doi: 10.1016/j.inoche.2015.08.015
    [60]
    OUYANG X, CHEN Z X, LIU X F, et al. One-dimensional (1D) helical and 2D homochiral metal-organic frameworks built from a new chiral octahydrobinaphthalene-derived dicarboxylic acid[J]. Inorganic Chemistry Communications, 2008, 11(9):948-950. doi: 10.1016/j.inoche.2008.04.023
    [61]
    CAO Y, ZHAO Y X, SONG F J, et al. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption Capacity[J]. Journal of Energy Chemistry, 2014, 23(4):468-474. doi: 10.1016/S2095-4956(14)60173-X
    [62]
    CHU C L, CHEN J R, LEE T Y. Enhancement of hydrogen adsorption by alkali-metal cation doping of metal-organic framework-5[J]. International Journal of Hydrogen Energy, 2012, 37(8):6721-6726. doi: 10.1016/j.ijhydene.2012.01.046
    [63]
    ANDREW C, ZHENG S T, ZHAO X, et al. New lithium ion clusters for construction of porous MOFs[J]. Crystal Growth & Design, 2014, 14(3):897-900. http://cn.bing.com/academic/profile?id=79edbe2a381df76ddd17c323244414f7&encoded=0&v=paper_preview&mkt=zh-cn
    [64]
    SREPUSHARAWOOT P, BLOMQVIST A, MOYSÉS ARAÚJO C, et al. Hydrogen binding in alkali-decorated iso-reticular metal organic framework-16 based on Zn, Mg, and Ca[J]. International Journal of Hydrogen Energy, 2011, 36(1):555-562. doi: 10.1016/j.ijhydene.2010.10.035
    [65]
    ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in metal-organic frameworks[J]. Angewandte Chemie International Edition, 2005, 44(30):4670-4679. doi: 10.1002/(ISSN)1521-3773
    [66]
    QIU S L, ZHU G S. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J]. Chemical Reviews, 2009, 253(23):2891-2911. doi: 10.1016-j.ccr.2009.07.020/
    [67]
    YU J H, XU R R. Rich structure chemistry in the aluminophosphate family[J]. Accounts of Chemical Research, 2003, 36(7):481-490. doi: 10.1021/ar0201557
    [68]
    MA L Q, LIN W B. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks[J]. Journal of the American Chemical Society, 2008, 130(42):13834-13835. doi: 10.1021/ja804944r
    [69]
    NI J, WEI K J, LIU Y Z, et al. Silver coordination polymers based on neutral trinitrile ligand:topology and the role of anion[J]. Crystal Growth & Design, 2010, 10(9):3964-3976. http://cn.bing.com/academic/profile?id=cd683f5d1de9792aceee3d90b79afae4&encoded=0&v=paper_preview&mkt=zh-cn
    [70]
    PAN Q H, CHEN J, SONG W C, et al. Template-directed synthesis of three new open-framework metal(Ⅱ) oxalates using Co(Ⅲ) complex as template[J]. CrystEngComm, 2010, 12(12):4198-4204. doi: 10.1039/c002658a
    [71]
    EORGIEVA I G, MACGILLIVRAY L R. Metal-mediated reactivity in the organic solid state:from self-assembled complexes to metal-organic frameworks[J]. Chemical Society Reviews, 2007, 36(8):1239-1248. doi: 10.1039/b516074j
    [72]
    SATOSHI H, RYOTARO M, DAISUKE T, et al. Immobilization of sodium ions on the pore surface of a porous coordination polymer[J]. Journal of the American Chemical Society, 2006, 128(13):4222-4223. doi: 10.1021/ja0606879
    [73]
    HOU L, ZHANG J P, CHEN X M, et al. Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters[J]. Chemical Communications, 2008, 34:4019-4201. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027442935/
    [74]
    CHENG X N, ZHANG W X, LIN Y Y, et al. A dynamic porous magnet exhibiting reversible guest-induced magnetic behavior modulation[J]. Advanced Materials, 2007, 19(11):1494-1498. doi: 10.1002/(ISSN)1521-4095
    [75]
    MULFORT K L, WILSON T M, WASIELEWSKI M R, et al. Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake[J]. Langmuir, 2009, 25(1):503-508. doi: 10.1021/la803014k
    [76]
    MULFORT K L, HUPP J T. Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks[J]. Inorganic Chemistry, 2008, 47(18):7936-7938. doi: 10.1021/ic800700h
    [77]
    ZHANG Z J, ZAWOROTKO M J. Template-directed synthesis of metal-organic materials[J]. Chemical Society Reviews, 2014, 43(16):5444-5455. doi: 10.1039/C4CS00075G
    [78]
    TAN Y X, WANG F, KANG Y, et al. Dynamic microporous indium(Ⅲ)-4, 4'-oxybis(benzoate)framework with high selectivity for the adsorption of CO2 over N2[J]. Chemical Communications, 2011, 47(2):770-772. doi: 10.1039/C0CC04095A
    [79]
    NEOGI S, NAVARRO J A R, BHARADWAJ P K. Variation of structures of coordination polymers of Ca(Ⅱ), Sr(Ⅱ), and Ba(Ⅱ) with a tripodal ligand:synthesis, structural, and gas adsorption studies[J]. Crystal Growth & Design, 2008, 8(5):1554-1558. https://www.researchgate.net/publication/230885640_Variation_of_Structures_of_Coordination_Polymers_of_CaII_SrII_and_BaII_with_a_Tripodal_Ligand_Synthesis_Structural_and_Gas_Adsorption_Studies
    [80]
    YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941):705-714. doi: 10.1038/nature01650
    [81]
    OCHAN R C, HEAD-GORDONA M. Computational studies of molecular hydrogen binding affinities:the role of dispersion forces, electrostatics, and orbital interactions[J]. Physical Chemistry Chemical Physics, 2006, 8(12):1357-1370. doi: 10.1039/b515409j
    [82]
    WU Q G, ESTEGHAMATIAN M, HU N X, et al. Synthesis, structure, and electroluminescence of BR2q (R=Et, Ph, 2-naphthyl and q=8-hydroxyquinolato)[J]. Chemistry of Materials, 2000, 12(1):79-83. doi: 10.1021/cm990372a
    [83]
    CALLEJA G, BOTAS J A, SÁNCHEZ-SÁNCHEZ M, et al. Hydrogen adsorption over zeolite-like MOF materials modified by ion exchange[J]. International Journal of Hydrogen Energy, 2010, 35(18):9916-9923. doi: 10.1016/j.ijhydene.2010.02.114
    [84]
    ZHANG F M, YAN P F, ZOU X Y, et al. Novel 3D alkali-lanthanide heterometal-organic frameworks with pyrazine-2, 3, 5, 6-tetracarboxylic acid:synthesis, structure, and magnetism[J]. Crystal Growth & Design, 2014, 14(4):6261-6268. http://cn.bing.com/academic/profile?id=ac75a65c7a169c8f67e12727c5f3cbbc&encoded=0&v=paper_preview&mkt=zh-cn
    [85]
    SUN W, WANG J Z, ZHANG G N, et al. A luminescent terbium MOF containing uncoordinated carboxyl groups exhibits highly selective sensing for Fe3+ Ions[J]. RSC Advances, 2014, 4(98):55252-55255. doi: 10.1039/C4RA10153G
    [86]
    CHAUDHARI A K, NAGARKAR S S, JOARDER B, et al. A continuous π-stacked starfish array of two-dimensional luminescent MOF for detection of nitro explosives[J]. Crystal Growth & Design, 2013, 13(8):3716-3721. https://www.researchgate.net/publication/242024176_A_Continuous_p-Stacked_Starfish_Array_of_Two-Dimensional_Luminescent_MOF_for_Detection_of_Nitro_Explosives
    [87]
    WANG Z W, CHEN M, LIU C S, et al. A versatile Al-based metal-organic framework with high physicochemical stability[J]. Chemistry-A European Journal, 2015, 21(48):17215-17219. doi: 10.1002/chem.201502615
    [88]
    TIAN D, LI Y, CHEN R Y, et al. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives[J]. Journal of Materials Chemistry, 2014, 2(5):1465-1470. doi: 10.1039/C3TA13983B
    [89]
    HU X L, QIN C, ZHAO L, et al. Assembly of Zn-metal organic frameworks based on a N-rich ligand:selective sorption for CO2 and luminescence sensing of nitro explosives[J]. RSC Advances, 2015, 5(61):49606-49613. doi: 10.1039/C5RA05945C
  • Related Articles

    [1]CAO Na, WANG Wei, WANG Dazhuang, GUO Jing, ZHANG Zhouhong. Air Pollution Characteristics and Potential Source Regions During the COVID-19 in Beijing[J]. Journal of Beijing University of Technology, 2022, 48(11): 1168-1174. DOI: 10.11936/bjutxb2021050010
    [2]HAN Changbao, WANG Manqi, HUANG Jianhua, ZHENG Jiayu, ZHAO Wenkang, ZHANG Hao, ZHANG Yongzhe. Research Progress of Triboelectric Generator and Its Potential Application[J]. Journal of Beijing University of Technology, 2020, 46(10): 1103-1127. DOI: 10.11936/bjutxb2020040016
    [3]ZHUANG Biying, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Research and Application Progress of Electrochromic Materials[J]. Journal of Beijing University of Technology, 2020, 46(10): 1091-1102. DOI: 10.11936/bjutxb2020030019
    [4]WANG Chang-wen, LI Jun, ZHAO Bai-hang, LIU Guo-yang, LIU Wei-yan. Removal of Estrogen From Water by Granular Activated Carbon Adsorption[J]. Journal of Beijing University of Technology, 2014, 40(4): 607-612. DOI: 10.3969/j.issn.0254-0037.2014.04.020
    [5]XU Huan-yan, LI Ping, LI Guo-dong, LIU Wei-chao. Adsorption of Acid Fuchsine in Water by SOD-type Zeolite Synthesized From Fly Ash[J]. Journal of Beijing University of Technology, 2012, 38(3): 438-442. DOI: 10.3969/j.issn.0254-0037.2012.03.023
    [6]FANG Lin-bo, WU Hong-xia, WANG Zhi-qiang, LIU Jie, WANG Shu-feng. Application of Object-oriented Modeling Methods in Performance Modeling[J]. Journal of Beijing University of Technology, 2009, 35(9): 1273-1278. DOI: 10.3969/j.issn.0254-0037.2009.09.022
    [7]DING Jian, GUO Cui-ping, HUANG Da-cheng, FAN Tong-xiang, DING Guo-ping, ZHANG Di. Modification and Adsorption Performance of Agricultural Residues of Water Bamboo Leaves[J]. Journal of Beijing University of Technology, 2009, 35(8): 1096-1101. DOI: 10.3969/j.issn.0254-0037.2009.08.015
    [8]CHEN Yi-hua, MU Yi-zhou, WEN Hui-na. Study on Adsorption Capability to Heavy Metal of PAA-silica Gel for Water Clarifier[J]. Journal of Beijing University of Technology, 2006, 32(1): 67-71. DOI: 10.3969/j.issn.0254-0037.2006.01.014
    [9]Zhang Kecong, Liu Jun, Wang Ximin. The Study of the Cr:KTP Crystal Growing and Its Related Properties[J]. Journal of Beijing University of Technology, 1995, 21(3): 1-11.
    [10]Wang Shusen, Ling Ailian, Wang Zhizhong. Effect of Impregnating with Nitrates on Properties of Desulfurizer from Coal[J]. Journal of Beijing University of Technology, 1989, 15(2): 81-86. DOI: 10.3969/j.issn.0254-0037.1989.02.012
  • Cited by

    Periodical cited type(1)

    1. 王耀东,李晓东,杨朋辉,张慧东,刘秀英,于景新. 高价态硼磷COFs材料理论设计与储氢性能研究. 人工晶体学报. 2024(04): 730-738 .

    Other cited types(5)

Catalog

    Article views (357) PDF downloads (114) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return