Citation: | HE Cunfu, DING Dongdong, LIU Xiucheng, MA Kun, WU Bin. Magnetic Incremental Permeability Detection Method for Measuring the Thickness of Nickel Layer of 65Mn Steel Plate[J]. Journal of Beijing University of Technology, 2020, 46(7): 727-733. DOI: 10.11936/bjutxb2018120005 |
Magnetic incremental permeability detection method was investigated to resolve the problem of measuring the thickness of ferromagnetic layer on the ferromagnetic component surface. During the incremental permeability detection process, a variety of magnetic parameters were measured and applied for non-destructive characterization of layer thickness. Nickel-coated 65Mn steel plates were used as test samples. Digital filtering tool was employed to separate the concerned signal from the measured magnetic responses superimposed by low and high frequency components. Orthogonal demodulation together with related digital signal processing techniques was used to extract multiple magnetic parameters from the curves of tangential magnetic field, eddy current impedance and magnetic incremental permeability. Linear fitting method was used to evaluate the performances (represented by the linear correlation extent and normalized sensitivity) of individual parameter on characterizing the nickel layer thickness. The magnetic parameters with small dispersion for repeated test results and high normalization sensitivity were selected for high-performance nickel layer thickness measurement on 65Mn steel plate.
[1] |
LI Y, CHEN Z M, MAO Y, et al. Quantitative evaluation of thermal barrier coating based on eddy current technique[J]. NDT & E International, 2012, 50:29-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db3ed0c1c80d429fc7c5d1a6a70bba1b
|
[2] |
楼敏珠, 张云柯, 程英丽.智能型高精度涂镀层涡流测厚仪的研制[J].无损检测, 2010, 32(6):434-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsjc201006010
LOU M Z, ZHANG Y K, CHENG Y L. Development of the high precision intelligent coating thickness gauge[J]. NDT, 2010, 32(6):434-437. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsjc201006010
|
[3] |
MARTIN J G, GIL J G, SANCHEZ E V. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3):2525-2565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-11-02525
|
[4] |
DENG Z Y, KANG Y H, ZHANG J K, et al. Multi-source effect in magnetizing-based eddy current testing sensor for surface crack in ferromagnetic materials[J]. Sensors and Actuators A:Physical, 2018, 271:24-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c075561eca699cc522a16a078e1905b
|
[5] |
GOTOH Y, MATSUOKA A, TAKAHASHI N. Electro-magnetic inspection technique of thickness of nickel-layer on steel plate without influence of lift-off between steel and inspection probe[J]. IEEE Transactions on Magnetics, 2010, 47(5):950-953. https://www.researchgate.net/publication/252060053_Electromagnetic_Inspection_Technique_of_Thickness_of_Nickel-Layer_on_Steel_Plate_Without_Influence_of_Lift-Off_Between_Steel_and_Inspection_Probe
|
[6] |
GABI Y, WOLTER B, GERBERSHAGEN A, et al. Electromagnetic examination of hardened depth of steel using 2D nonlinear hysteresis FEM analysis[C/OL]//11th European Conference on Non-Destructive Testing, 2014.[2018-11-05]. https: //www.ndt.net/events/ECNDT2014/app/content/paper/204_Gabi.pdf.
|
[7] |
PEREVERTOV O, NESLUSAN M, STUPAKOV A. Detection of milled 100Cr6 steel surface by eddy current and incremental permeance methods[J]. NDT & E International, 2017, 87:15-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39b6e0468f201406dc3225b3628873e9
|
[8] |
MATSUMOTO T, UCHIMOTO T, TAKAGI T, et al. Evaluation of chill structure in ductile cast iron by incremental permeability method[J]. International Journal of Applied Electroma-gnetics and Mechanics, 2016, 52:1599-1605. doi: 10.3233/JAE-162106
|
[9] |
MOORTHY V. Unique correlation between non-linear distortion of tangential magnetic field and magnetic excitation voltage-unexplored ferromagnetic phenomena and their application for ferromagnetic materials evaluation[J]. Journal of Magnetism and Magnetic Materials, 2016, 398(4):101-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a73a48b43b1fa1969c851c2193f82125
|
[10] |
STUPAKOV O. System for controllable magnetic measurement with direct field determination[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(4):631-636. doi: 10.1016/j.jmmm.2011.08.058
|
[11] |
MERCIER D, LESAGE J, DECOOPMAN X, et al. Eddy currents and hardness testing for evaluation of steel decarburizing[J]. NDT & E International, 2006, 39(8):652-660. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b55cfe7dde9baedb835bb5713b548adf
|
[12] |
KAHROBAEE S, KASHEFI M, ALAM A S. Magnetic NDT technology for characterization of decarburizing depth[J]. Surface & Coatings Technology, 2011, 205(16):4083-4088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e93ba5a9cd0f0924ee10c147c0a09a25
|
[13] |
CHEN H E, XIE S J, CHEN Z M, et al. Quantitative nondestructive evaluation of plastic deformation in carbon steel based on electromagnetic methods[J]. Materials Transactions, 2014, 55(12):1806-1815. https://www.jstage.jst.go.jp/article/matertrans/55/12/55_M2014173/_article
|
[14] |
GABI Y, MARTINS O, WOLTER B, et al. Combination of electromagnetic measurements and FEM simulations for nondestructive determination of mechanical hardness[J]. AIP Advances, 2018, 8(4):1-8. https://ui.adsabs.harvard.edu/abs/2018AIPA....8d7502G/abstract
|
[15] |
MAKAR J M, TANNER B K. The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels[J]. Journal of Magnetism and Magnetic Materials, 2000, 222(3):291-304. doi: 10.1016/S0304-8853(00)00558-8
|
[16] |
GABI Y, WOLTER B, GERBERSHAGEN A, et al. FEM simulations of incremental permeability signals of a multi-layer steel with consideration of the hysteretic behavior of each layer[J]. IEEE Transactions on Magnetics, 2014, 50(4):7026504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08a0fa6b0040f89de36435cd033044bc
|
[17] |
SZIELASKO K, MIRONENKO I, ALTPETER I, et al. Minimalistic devices and sensors for micromagnetic materials characterization[J]. IEEE Transactions on Magnetics, 2013, 49(1):101-104. doi: 10.1109/TMAG.2012.2217943
|
[1] | WANG Xianxian, HE Cunfu, LIU Xiucheng, LI Peng, NING Mengshuai, XING Zhixiang. Application of Micro-magnetic Testing Technology in Yield/Tensile Strength Testing of Cr12MoV Steel and 3Cr13 Steel[J]. Journal of Beijing University of Technology, 2025, 51(1): 32-41. DOI: 10.11936/bjutxb2023030008 |
[2] | JIAO Jingpin, CHANG Yu, LI Guanghai, SHI Futao, HE Cunfu, WU Bin. Outer Wall Damage of Cladding Tube Based on Low Frequency Magnetic Flux Leakage Technology[J]. Journal of Beijing University of Technology, 2018, 44(12): 1471-1477. DOI: 10.11936/bjutxb2017050024 |
[3] | HUANG Yan, HE Cunfu, LIU Xiucheng, WU Bin. Nondestructive Characterization of Surface Hardness in Mould Steels Using Eddy Current Method[J]. Journal of Beijing University of Technology, 2018, 44(5): 672-678. DOI: 10.11936/bjutxb2017090052 |
[4] | SONG Guorong, XU Yuyang, LÜ Yan, HONG Guangfu, QIN Dengqian, WU Bin, HE Cunfu. Ultrasonic Nondestructive Testing and Evaluation Method of Special Processing Mechanical Properties[J]. Journal of Beijing University of Technology, 2017, 43(10): 1449-1456. DOI: 10.11936/bjutxb2016090034 |
[5] | CHANG Li-hong, DAI Jian, QIAN Wei. Nondestructive Testing of Internal Defect of Ancient Architecture Wood Members Based on Shapley Value[J]. Journal of Beijing University of Technology, 2016, 42(6): 886-892. DOI: 10.11936/bjutxb2015110081 |
[6] | DAI Jian, CHANG Lihong, QIAN Wei, LI Xin. Damage Characteristics of Ancient Architecture Wood Members and Stress Wave Nondestructive Testing of Internal Void[J]. Journal of Beijing University of Technology, 2016, 42(2): 236-244. DOI: 10.11936/bjutxb2015030045 |
[7] | JI Yong-zhi, WANG Yuan-zhan, WANG Li-qiang. Numerical Study of Nondestructive Test of a Wharf Concrete Pile[J]. Journal of Beijing University of Technology, 2011, 37(11): 1729-1732. DOI: 10.3969/j.issn.0254-0037.2011.11.019 |
[8] | YAN Bing-sheng, WU Bin, LI Jia-rui, HE Cun-fu. Experimental Study of Magnesium Mechanical Performance Degradation Off-line Testing Using Nonlinear Ultrasonic[J]. Journal of Beijing University of Technology, 2011, 37(10): 1459-1464. DOI: 10.3969/j.issn.0254-0037.2011.10.004 |
[9] | WU Bin, DENG Fei, HE Cun-fu. Review of Signal Processing in Ultrasonic Guided Waves Nondestructive Testing[J]. Journal of Beijing University of Technology, 2007, 33(4): 342-348. DOI: 10.3969/j.issn.0254-0037.2007.04.002 |
[10] | ZHANG Yi-liang, LIU Hong-juan, LI Xiao-yang. Characteristics of Metal Magnetic Memory Technique in Testing Stainless Steel and Carbon Steel Vessels[J]. Journal of Beijing University of Technology, 2006, 32(11): 961-966. DOI: 10.3969/j.issn.0254-0037.2006.11.001 |
1. |
王贤贤,何存富,刘秀成,李鹏,宁梦帅,邢智翔. 微磁检测技术在Cr12MoV钢和3Cr13钢屈服/抗拉强度检测中的应用. 北京工业大学学报. 2025(01): 32-41 .
![]() | |
2. |
涂洪铭,伍剑波,柯瑞,夏慧,陈笑天,MACIEJ Roskosz. 激励参数对Q235钢增量磁导率蝶形图的影响研究. 机械工程学报. 2024(02): 27-35 .
![]() | |
3. |
邢智翔,刘秀成,王贤贤,宁梦帅,张猛,高铭,何存富. 45钢表面硬化层深度的高鲁棒性微磁定量预测方法. 北京工业大学学报. 2024(09): 1049-1060 .
![]() | |
4. |
孟祥伟. 真空烧结制备CuAl_2O_3/Fe基新型电工材料组织及导电性能分析. 山西冶金. 2024(10): 27-29 .
![]() | |
5. |
韩新阳,康静伟,王楠,刘秀成,何存富. 电镀镍膜应变的磁巴克豪森噪声试验表征. 无损检测. 2023(07): 1-6+84 .
![]() | |
6. |
陈学宽,龙盛蓉,杨琳瑜,宋奕霖,邹越豪,李志农. 铜覆钢涡流检测探头优化设计与研究. 失效分析与预防. 2023(04): 228-232+249 .
![]() | |
7. |
夏鹏,魏志辉. 基于电磁检测的火车车轮残余应力定量预测. 精密成形工程. 2022(09): 136-141 .
![]() | |
8. |
张海辉,孙娟,孙栗. Fe粉量对真空烧结NiAl_2O_3电子材料组织及导电性能的影响. 真空科学与技术学报. 2021(06): 586-590 .
![]() |