• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
HE Jian, ZHU Zhe, WANG Weidong, YU Weiguo. Prediction Technology for Parking Occupancy Rate Based on Multidimensional Spatial-Temporal Causality Learning[J]. Journal of Beijing University of Technology, 2020, 46(1): 17-23. DOI: 10.11936/bjutxb2018100025
Citation: HE Jian, ZHU Zhe, WANG Weidong, YU Weiguo. Prediction Technology for Parking Occupancy Rate Based on Multidimensional Spatial-Temporal Causality Learning[J]. Journal of Beijing University of Technology, 2020, 46(1): 17-23. DOI: 10.11936/bjutxb2018100025

Prediction Technology for Parking Occupancy Rate Based on Multidimensional Spatial-Temporal Causality Learning

More Information
  • Received Date: October 23, 2018
  • Available Online: August 03, 2022
  • Published Date: January 09, 2020
  • To solve the problem of less attention to spatial factor and multidimensional influence factor in parking occupancy rate prediction, the Granger causality model was expanded and a parking analysis model that involves the spatial-temporal correlation and multi-dimensional influencing factors was proposed. Based on the model, a prediction algorithm for parking occupancy rate was designed by using neural network. The simulation experiments were conducted on the CityPulse dataset provided by the European Union FP7 project. Results show that neural network learning prediction methods based on multidimensional spatial-temporal causality have improved the prediction accuracy compared to other prediction methods based on spatial-temporal correlation. In a sample of parking lot with a capacity of 56 cars, the mean absolute error of parking occupancy rate prediction after 30 minutes and after 1 hour are 2.488 and 3.418, respectively, and prediction results with absolute error less than 20% and 10% account for a larger proportion of all predictions.

  • [1]
    NUGENT C D, HONG X, HALLBERG J, et al. Assessing the impact of individual sensor reliability within smart living environments[C]//2008 IEEE International Conference on Automation Science and Engineering. Piscataway: IEEE, 2008: 685-690.
    [2]
    TENG H, QI Y, MARTINELLI D R. Parking difficulty and parking information system technologies and costs[J]. Journal of Advanced Transportation, 2010, 42(2):151-178. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025732163/
    [3]
    YANG Z, LIU H, WANG X. The research on the key technologies for improving efficiency of parking guidance system[C]//Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2003: 1177-1182.
    [4]
    LIU S, GUAN H, YAN H, et al. Unoccupied parking space prediction of chaotic time series[C]//Tenth International Conference of Chinese Transportation Professionals. St. Louis: ASCE, 2010: 2122-2131.
    [5]
    TAMRAZIAN A, QIAN Z, RAJAGOPAL R. Where is my parking spot?[J]. Journal of the Transportation Research Board, 2015, 2489(1):77-85. doi: 10.3141/2489-09
    [6]
    ARNOTT R, ROWSE J. Modeling parking[J]. Journal of Urban Economics, 1999, 45(1):97-124. doi: 10.1006/juec.1998.2084
    [7]
    CAICEDO F, BLAZQUEZ C, MIRANDA P. Prediction of parking space availability in real time[J]. Expert Systems with Applications, 2012, 39(8):7281-7290. doi: 10.1016/j.eswa.2012.01.091
    [8]
    RAJABIOUN T, FOSTER B, IOANNOU P A. Intelligent parking assist[C]//Proceedings of the 21st Mediterranean Conference on Control and Automation. Piscataway: IEEE, 2013: 1156-1161.
    [9]
    NANDUGUDI A, KI T, NUESSLE C, et al. PocketParker: pocketsourcing parking lot availability[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2014: 963-973.
    [10]
    ZIAT A, LEROY B, BASKIOTIS N, et al. Joint prediction of road-traffic and parking occupancy over a city with representation learning[C]//Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2016: 725-730.
    [11]
    VLAHOGIANNI E I, KEPAPTSOGLOU K, TSETSOS V, et al. A real-time parking prediction system for smart cities[J]. Journal of Intelligent Transportation Systems, 2016, 20(2):192-204. doi: 10.1080/15472450.2015.1037955
    [12]
    王丰元, 邹旭东, 阎岩, 等.基于用地和交通特征的停车需求预测模型[J].交通运输工程学报, 2007, 7(2):84-88. doi: 10.3321/j.issn:1671-1637.2007.02.018

    WANG F Y, ZOU X D, YAN Y, et al. Forecast model of parking demand based on land function and traffic characteristics[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2):84-88. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.02.018
    [13]
    RAJABIOUN T, IOANNOU P A. On-street and off-street parking availability prediction using multivariate spatiotemporal models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2913-2924. doi: 10.1109/TITS.2015.2428705
    [14]
    PFLÜGLER C, KÖHN T, SCHREIECK M, et al. Predicting the availability of parking spaces with publicly available data[C]//Informatics 2016. Berlin: Springer, 2016: 361-374.
    [15]
    GRANGER C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3):424-438. doi: 10.2307/1912791
    [16]
    ZHANG G, PATUWO B E, HU M Y. Forecasting with artificial neural networks:the state of the art[J]. International Journal of Forecasting, 1998, 14(1):35-62. doi: 10.1016/S0169-2070(97)00044-7
    [17]
    MATHUR S, JIN T, KASTURIRANGAN N, et al. ParkNet: drive-by sensing of road-side parking statistics[C]//Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2010: 123-136.
    [18]
    KOLOZALI S, BERMUDEZ-EDO M, PUSCHMANN D, et al. A knowledge-based approach for real-time IoT data stream annotation and processing[C]//Proceedings of the 2014 IEEE International Conference on Internet of Things. Piscataway: IEEE, 2015: 215-222.
    [19]
    HANAFIZADEH P, RAVASAN A Z, KHAKI H R. An expert system for perfume selection using artificial neural network[J]. Expert Systems with Applications, 2010, 37(12):8879-8887. doi: 10.1016/j.eswa.2010.06.008
    [20]
    高广银, 丁勇, 姜枫, 等.基于BP神经网络的停车诱导泊位预测[J].计算机系统应用, 2017, 26(1):236-239. http://d.old.wanfangdata.com.cn/Periodical/jsjxtyy201701041

    GAO G Y, DING Y, JIANG F, et al. Prediction of parking guidance space based on BP neural networks[J]. Computer Systems and Applications, 2017, 26(1):236-239. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjxtyy201701041
  • Related Articles

    [1]JIA Kebin, WANG Yanming, YANG Jiachun, LIU Pengyu. Nonlinear Correction of Pressure Sensors Based on Neural Network[J]. Journal of Beijing University of Technology, 2021, 47(1): 40-49. DOI: 10.11936/bjutxb2019110002
    [2]WANG Zongjie, XING Mingfeng, WANG Hongbo. Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network[J]. Journal of Beijing University of Technology, 2017, 43(1): 8-12. DOI: 10.11936/bjutxb2016040071
    [3]LIU Zhi-feng, PAN Dan, WANG Jian-hua, YANG Shuang-xi. Flux Prediction of MBR Based on PSO-BP Neural Network[J]. Journal of Beijing University of Technology, 2012, 38(1): 126-131. DOI: 10.3969/j.issn.0254-0037.2012.01.025
    [4]WANG Wei, WEI Shi-min, YANG Yue-qiao, JIANG Yun-fang, LI Duan-ling. Path Planning for a Mobile Robot using Neural Networks[J]. Journal of Beijing University of Technology, 2010, 36(9): 1287-1291. DOI: 10.3969/j.issn.0254-0037.2010.09.022
    [5]LI Yi, ZHANG Hui-hui. Intelligent Elevator Detecting System Based on Neural Network[J]. Journal of Beijing University of Technology, 2010, 36(4): 440-444. DOI: 10.3969/j.issn.0254-0037.2010.04.002
    [6]WANG Fang, CHENG Shui-yuan, LI Ming-jun, FAN Qing. Optimizing BP Networks by Means of Genetic Algorithms in Air Pollution Prediction[J]. Journal of Beijing University of Technology, 2009, 35(9): 1230-1234. DOI: 10.3969/j.issn.0254-0037.2009.09.015
    [7]ZHANG Lian-bao, ZUO Yan-sheng, FAN Qing-wu. Application of Evolutional Neural Network Model in Prediction of Laser Quenching Performance[J]. Journal of Beijing University of Technology, 2003, 29(3): 377-380. DOI: 10.3969/j.issn.0254-0037.2003.03.026
    [8]LI Yu-jian, WANG Shou-jue. Direction-basis-function Neural Network and Its Approximation Capabilities[J]. Journal of Beijing University of Technology, 2003, 29(3): 372-376. DOI: 10.3969/j.issn.0254-0037.2003.03.025
    [9]GONG Dao-xiong, RUAN Xiao-gang. Neural Network Model for Genetic Algorithm[J]. Journal of Beijing University of Technology, 2003, 29(2): 175-178. DOI: 10.3969/j.issn.0254-0037.2003.02.013
    [10]JIANG Chun-fu, YU Yue-qing. Current Development of Neural Network in Robot Control[J]. Journal of Beijing University of Technology, 2003, 29(1): 5-11. DOI: 10.3969/j.issn.0254-0037.2003.01.002
  • Cited by

    Periodical cited type(2)

    1. 孙剑萍,徐昀,李晓鹏,汤兆平. 城市停车场路径规划系统设计与实现. 现代电子技术. 2021(21): 83-89 .
    2. 王竹荣,薛伟,牛亚邦,崔颖安,孙钦东,黑新宏. 基于注意力机制的泊位占有率预测模型研究. 通信学报. 2020(12): 182-192 .

    Other cited types(7)

Catalog

    Article views (246) PDF downloads (73) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return