• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
SHEN Yanping, WU Chunhua, LUO Jie, GAO Fangping. KNN Intrusion Detection Model Based on Meta-optimization[J]. Journal of Beijing University of Technology, 2020, 46(1): 24-32. DOI: 10.11936/bjutxb2018100005
Citation: SHEN Yanping, WU Chunhua, LUO Jie, GAO Fangping. KNN Intrusion Detection Model Based on Meta-optimization[J]. Journal of Beijing University of Technology, 2020, 46(1): 24-32. DOI: 10.11936/bjutxb2018100005

KNN Intrusion Detection Model Based on Meta-optimization

More Information
  • Received Date: October 10, 2018
  • Available Online: August 03, 2022
  • Published Date: January 09, 2020
  • To improve the performance of intrusion detection model based on KNN, a KNN intrusion detection model using meta-optimization based on a local search algorithm for feature weighting was proposed. The differential evolution algorithm was used to optimize feature weights and the LUS based meta-optimization was selected to optimize the differential evolution. The NSL dataset was used to carry out the experiments. The proposed model was compared with that optimized by other commonly used heuristic algorithms, including GA, PSO and GWO. Results show that compared with the traditional KNN, the accuracy of the proposed method is improved by 2.86%, the detection rate increased by 3.18% and the false positive rate is reduced by 50%. The optimization based on meta-optimization is better than other optimization algorithms commonly used.

  • [1]
    WU S X, BANZHAF W. The use of computational intelligence in intrusion detection systems:a review[J]. Applied Soft Computing, 2010, 10(1):1-35.
    [2]
    杨义先, 钮心忻.入侵检测理论与技术[M].北京:高等教育出版社, 2006:12-50.

    YANG Y X, NIU X X. Theory and technologies of intrusion detection[M]. Beijing:Higher Education Press, 2006:12-50. (in Chinese)
    [3]
    DENG Z, ZHU X, CHENG D, et al. Efficient kNN classification algorithm for big data[J]. Neurocomputing, 2016, 195(C):143-148. http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy201901013
    [4]
    MAILLO J, RAMÍREZ S, TRIGUERO I, et al. kNN-IS:an iterative spark-based design of the k-nearest neighbors classifier for big data[J]. Knowledge-Based Systems, 2017, 117:3-15. doi: 10.1016/j.knosys.2016.06.012
    [5]
    ZHANG S, LI X, ZONG M, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(5):1774-1785. http://www.ncbi.nlm.nih.gov/pubmed/28422666
    [6]
    CHEN M, GOU J, WANG C, et al. PSO-based adaptively normalized weighted KNN classifier[J]. Journal of Computational Information Systems, 2015, 11(4):1407-1415.
    [7]
    TAHIR M A, BOURIDANE A, KURUGOLLU F. Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier[J]. Pattern Recognition Letters, 2007, 28(4):438-446. doi: 10.1016/j.patrec.2006.08.016
    [8]
    李峰, 苗夺谦, 张志飞, 等.基于互信息的粒化特征加权多标签学习k近邻算法[J].计算机研究与发展, 2017, 54(5):1024-1035. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201705011

    LI F, MIAO D Q, ZHANG Z F, et al. Mutual information based granular feature weighted k-nearest neighbors algorithm for multi-label learning[J]. Journal of Computer Research and Development, 2017, 54(5):1024-1035. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201705011
    [9]
    SU M Y. Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers[J]. Expert Systems with Applications, 2011, 38(4):3492-3498. doi: 10.1016/j.eswa.2010.08.137
    [10]
    SU M Y, CHANG K C, WEI H F, et al. Feature weighting and selection for a real-time network intrusion detection system based on GA with KNN[C]//Proceedings of the 2008 Intelligence and Security Informatics. Berlin: Springer, 2008: 195-204.
    [11]
    ABUROMMAN A A, REAZ M B I. A novel SVM-kNN-PSO ensemble method for intrusion detection system[J]. Applied Soft Computing, 2016, 38(C):360-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f222e2eb71feaecb0077cd5ef561e82
    [12]
    LI W, YI P, WU Y, et al. A new intrusion detection system based on KNN classification algorithm in wireless sensor network[J]. Journal of Electrical & Computer Engineering, 2014, 2014(5):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003929272
    [13]
    MENG W, LI W, KWOK L F. Design of intelligent KNN-based alarm filter using knowledge-based alert verification in intrusion detection[J]. Security & Communication Networks, 2016, 8(18):3883-3895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94d9adfe8db1268387d3a63d0322e291
    [14]
    TSAI C F, LIN C Y. A triangle area based nearest neighbors approach to intrusion detection[J]. Pattern Recognition, 2010, 43(1):222-229. doi: 10.1016/j.patcog.2009.05.017
    [15]
    LIN W C, KE S W, TSAI C F. CANN:an intrusion detection system based on combining cluster centers and nearest neighbors[J]. Knowledge-Based Systems, 2015, 78(1):13-21. http://d.old.wanfangdata.com.cn/Periodical/nmglydcsj200101021
    [16]
    SU M Y. Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification[J]. Journal of Network & Computer Applications, 2011, 34(2):722-730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36859f47a6290f922ffad50fe93c58ac
    [17]
    KUANG F, XU W, ZHANG S. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(C):178-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70645c09310c455f130e00b4bb440391
    [18]
    COSTA K A P, PEREIRA L A M, NAKAMURA R Y M, et al. A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks[J]. Information Sciences, 2015, 294(10):95-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4317b3aa5f8f45e6e05791cfb6f7aa90
    [19]
    FENG W Y, ZHANG Q L, HU G Z, et al. Mining network data for intrusion detection through combining SVMs with ant colony networks[J]. Future Generation Computer System, 2014, 37(7):127-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=024488b6c63f753d82b371eb95f658cd
    [20]
    WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67-82. doi: 10.1109/4235.585893
    [21]
    VINTAN L, CHIS R, ISMAIL M A, et al. Improving computing systems automatic multiobjective optimization through meta-optimization[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(7):1125-1129. doi: 10.1109/TCAD.2015.2501299
    [22]
    STORN R, PRICE K V. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(10):341-359. doi: 10.1023-A-1008202821328/
    [23]
    TRIGUERO I, GARCÍA S, HERRERA F. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification[J]. Pattern Recognition, 2011, 44(4):901-916. doi: 10.1016/j.patcog.2010.10.020
    [24]
    PEDERSEN M E H. Tuning & simplifying heuristical optimization[D]. Southampton: University of Southampton, 2010: 14-18.
    [25]
    SHARMA A, MANZOOR I, KUMAR N. A feature reduced intrusion detection system using ANN classifier[J]. Expert Systems with Applications, 2017, 88:249-257. doi: 10.1016/j.eswa.2017.07.005
    [26]
    Canadian Institute for Cybersecurity. NSL-KDD dataset[DS/OL].[2018-06-10]. http://nsl.cs.unb.ca/NSL-KDD.
    [27]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimization[J]. Advances in Engineering Software, 2014, 69(7):46-61. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs-e201502012
    [28]
    HASAN M A M, NASSER M, PAL B, et al. Support vector machine and random forest modeling for intrusion detection system (IDS)[J]. Journal of Intelligent Learning Systems & Applications, 2014, 6(1):45-52.
    [29]
    CHENG C, TAY W P, HUANG G B. Extreme learning machines for intrusion detection[C]//International Joint Conference on Neural Networks. Washington, D C: IEEE, 2012: 1-8.
    [30]
    ZHANG J, ZULKERNINE M, HAQUE A. Random-forests-based network intrusion detection systems[J]. IEEE Transactions on Systems Man & Cybernetics:Part C, 2008, 38(5):649-659. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025398721/
    [31]
    NGUYEN H A, CHOI D. Application of data mining to network intrusion detection: classifier selection model[C]//Proceedings of the 11th Asian-Pacific Network Operations and Management Symposium. Berlin: Springer, 2008: 399-408.
  • Related Articles

    [1]SI Pengbo, LI Shuangyuan, LIU Chang, LI Meng. Contemporary Survey of Machine Learning-based Approaches to Solving Communication Issues for Intelligent Reflecting Surfaces[J]. Journal of Beijing University of Technology, 2025, 51(1): 87-99. DOI: 10.11936/bjutxb2023110015
    [2]GAO Tiaokang, JIN Xiaoning, LAI Yingxu. Model Heterogeneous Federated Learning for Intrusion Detection[J]. Journal of Beijing University of Technology, 2024, 50(5): 543-557. DOI: 10.11936/bjutxb2022060002
    [3]LI Yahong, ZHOU Chengxu, DUAN Lijuan, WANG Simeng, GU Ke. Review of Intelligent Detection, Identification and Warning Methods for Airborne Particulate Matter Based on Machine Perception and Learning[J]. Journal of Beijing University of Technology, 2024, 50(2): 195-206. DOI: 10.11936/bjutxb2023070048
    [4]YUAN Jiaojiao, HU Yongli, SUN Yanfeng, YIN Baocai. Survey of Small Object Detection Methods Based on Deep Learning[J]. Journal of Beijing University of Technology, 2021, 47(3): 293-302. DOI: 10.11936/bjutxb2020090019
    [5]WANG Xiujuan, XIANG Congbin. DoS Attack Detecting Algorithm Based on Accumulation[J]. Journal of Beijing University of Technology, 2017, 43(9): 1328-1334. DOI: 10.11936/bjutxb2016090074
    [6]JIANG Feng, ZHANG Youqiang, DU Junwei, LIU Guozhu, SUI Yuefei. Approximate Reducts-based Ensemble Learning Algorithm and Its Application in Intrusion Detection[J]. Journal of Beijing University of Technology, 2016, 42(6): 877-885. DOI: 10.11936/bjutxb2015100008
    [7]HE Jing-sha, XING Li, ZHANG Ting, LI Guo-rui. A Dynamic Intrusion Detection System for Cluster-based Wireless Sensor Networks[J]. Journal of Beijing University of Technology, 2010, 36(6): 845-849.
    [8]WU Jing, LIU Yan-heng, MENG Fan-xue. Algorithm of Multi-category SVM Incremental Learning in Application of Intrusion Detection[J]. Journal of Beijing University of Technology, 2009, 35(12): 1697-1702.
    [9]ZHANG Ran, HE Jing-sha. Research on Dynamic Adaptive Intrusion Detection Model[J]. Journal of Beijing University of Technology, 2005, 31(z1): 97-102.
    [10]WANG Quan-min, WANG Rui, ZHAO Qin. A Log Analyzing System for Linux LASL[J]. Journal of Beijing University of Technology, 2005, 31(4): 420-422.
  • Cited by

    Periodical cited type(6)

    1. 潘裕庆,张苏宁,冯仁君,景栋盛. 结合粒子群优化和LightGBM的入侵检测方法. 计算机与现代化. 2023(04): 123-126 .
    2. 张碧洪,夏海霞,张宇,高志刚. 基于多特征融合自动编码器的增量式入侵检测. 计算机系统应用. 2023(06): 42-50 .
    3. 臧世伟,高丽婷,黄涛,殷欣欣. 基于LUS-PSO权重优化的入侵检测技术研究. 河北建筑工程学院学报. 2023(02): 204-208 .
    4. 赵辉. 入侵检测在机器学习和深度学习中的发展. 现代计算机. 2022(13): 62-66 .
    5. 刘安云,黄洪,方彬皓. 基于多通道特征提取的入侵检测模型研究. 四川轻化工大学学报(自然科学版). 2022(06): 57-65 .
    6. 林泳昌,朱晓姝. 一种基于SMOTE的不均衡样本KNN分类方法. 广西科学. 2020(03): 276-283 .

    Other cited types(13)

Catalog

    Article views (201) PDF downloads (52) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return