• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
LI Haitao, LIU Changjun. Optimal Design of Airborne Cognitive Network Based on Simultaneous Transmit and Receiver[J]. Journal of Beijing University of Technology, 2019, 45(1): 33-41. DOI: 10.11936/bjutxb2018010008
Citation: LI Haitao, LIU Changjun. Optimal Design of Airborne Cognitive Network Based on Simultaneous Transmit and Receiver[J]. Journal of Beijing University of Technology, 2019, 45(1): 33-41. DOI: 10.11936/bjutxb2018010008

Optimal Design of Airborne Cognitive Network Based on Simultaneous Transmit and Receiver

More Information
  • Received Date: January 08, 2018
  • Available Online: August 03, 2022
  • Published Date: January 09, 2019
  • For the hierarchical airborne cognitive network that is composed of primary net(PNet) and secondary net(SNet), an optimal design of hierarchical airborne network, which is equipped with cognitive anti-jamming radio, was investigated based on simultaneous transmit and receive(STAR). First, the false alarm and detection probability of the multihop cognitive network in the fading channel were derived based on the energy detection method(ED), then the throughput of the secondary net CRs was calculated. Furthermore, a multi-objective optimization model constraint by sensing time, decision threshold and transmitting power was constructed to maximize the throughputs and minimize the transmitting power of the secondary net CRs, an approach was presented based on quasi-Newton method and a logarithm penalty function method to solve this optimization problem. The simulation results show that the Pareto optimal solution can be obtained after the optimization of each set of initialized target functions, and the optimization solution is corresponding to unique sensing time, channel decision threshold and channel transmit power.

  • [1]
    CHEBG B N, BLOCK F J, HAMILTON B R, et al. Design considerations for next-generation airborne tactical networks[J]. IEEE Communications Magazine, 2014, 52(5):138-145. doi: 10.1109/MCOM.2014.6815904
    [2]
    SAKHAEE E, JAMALIPOUR A. The global in-flight internet[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(9):1748-1757. doi: 10.1109/JSAC.2006.875122
    [3]
    AMIRFEIZ M. The ATENAA project[EB/OL].[2018-01-01]. http://cordis.europa.eu/result/rcn/47576_en.html
    [4]
    SCHNELL M, SCALISE S. Newsky-a concept for networking the SKY for civil aeronautical communications[J]. IEEE Aerospace & Electronic Systems Magazine, 2007, 22(5):25-29. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4106246
    [5]
    BHATTARAI S, PARK J M J, GAO B, et al. An overview of dynamic spectrum sharing:ongoing initiatives, challenges, and a roadmap for future research[J]. IEEE Transactions on Cognitive Communications & Networking, 2016, 2(2):110-128. http://ieeexplore.ieee.org/document/7516641
    [6]
    HOSSAIN E, NIYATO D, KIM D I. Evolution and future trends of research in cognitive radio:a contemporary survey[J]. Wireless Communications & Mobile Computing, 2015, 15(11):1530-1564. doi: 10.1002/wcm.2443/pdf
    [7]
    WANG Y. Cognitive radio for aeronautical air-ground communications[J]. IEEE Aerospace & Electronic Systems Magazine, 2010, 25(5):18-23. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5486537
    [8]
    SALEEM Y, REHMANI M H, ZEADALLY S. Integration of cognitive radio technology with unmanned aerial vehicles:issues, opportunities, and future research challenges[J]. Journal of Network & Computer Applications, 2015, 50:15-31. http://www.sciencedirect.com/science/article/pii/S1084804514002811
    [9]
    JACOB P, SIRIGINA R P, MADHUKUMAR A S, et al. Cognitive radio for aeronautical communications:a survey[J]. IEEE Access, 2017, 4:3417-3443. http://ieeexplore.ieee.org/document/7473840/
    [10]
    刘淑慧.机载认知通信网络架构研究[J].电讯技术, 2016, 56(4):360-364. doi: 10.3969/j.issn.1001-893x.2016.04.002

    LIU S H. Study on airborne cognitive communication networks architecture[J]. Telecommunication Engineering, 2016, 56(4):360-364. (in Chinese) doi: 10.3969/j.issn.1001-893x.2016.04.002
    [11]
    黎海涛, 钱一名, 方正.网电空间数据链的认知抗干扰技术[J].航空学报, 2016, 37(11):3476-3484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201611025

    LI H T, QIAN Y M, FANG Z. Simultaneous transmit and receive based cognitive anti-jamming for cyberspace datalink[J]. Acta Aeronautica ET Astronautica Sinica, 2016, 37(11):3476-3484. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201611025
    [12]
    LI H T, QIAN Y M. Effects of IQ imbalance for simultaneous transmit and receive based cognitive anti-jamming receiver[J]. AEU-International Journal of Electronics and Communications, 2017, 72:26-32. doi: 10.1016/j.aeue.2016.11.011
    [13]
    DANG H V, KINSNER W. An analytical multiobjective optimization of joint spectrum sensing and power control in cognitive radio networks[C]//International Conference on Cognitive Informatics & Cognitive Computing. Piscataway: IEEE, 2015: 39-48. https://www.researchgate.net/publication/308822953_An_analytical_multiobjective_optimization_of_joint_spectrum_sensing_and_power_control_in_cognitive_radio_networks
    [14]
    LIU W, QIN G, LI S, et al. A multiobjective evolutionary algorithm for energy-efficient cooperative spectrum sensing in cognitive radio sensor network[J]. International Journal of Distributed Sensor Networks, 2015, 2015:9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004266719
    [15]
    YUAN W, YOU X, XU J, et al. Multiobjective optimization of linear cooperative spectrum sensing:pareto solutions and refinement[J]. IEEE Trans Cybern, 2016, 46(1):96-108. doi: 10.1109/TCYB.2015.2395412
    [16]
    FITZ M P, HALFORD T R, HOSSAIN I, et al. Towards simultaneous radar and spectral sensing[C]//International Symposium on Dynamic Spectrum Access Neworks. Piscataway: IEEE, 2014: 15-19. https://ieeexplore.ieee.org/document/6817774
    [17]
    KOLODZIEJ K E, PERRY B T, HERD J S. Simultaneous transmit and receive (STAR) system architecture using multiple analog cancellation layers[C]//Microwave Symposium. Piscataway: IEEE, 2015: 1-4. https://www.researchgate.net/publication/308836368_Simultaneous_Transmit_and_Receive_STAR_system_architecture_using_multiple_analog_cancellation_layers
    [18]
    CHEUNG S K, HALLORAN T P, WEEDON W H, et al. MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive[J]. IEEE Transactions on Microwave Theory & Techniques, 2010, 58(3):489-497. http://ieeexplore.ieee.org/document/5409541/
    [19]
    ENSERINK S, FITZ M P, GOVERDHANAM K, et al. Joint analog and digital interference cancellation[C]//Microwave Symposium. Piscataway: IEEE, 2014: 378-379. https://www.researchgate.net/publication/269306622_Joint_Analog_and_Digital_Interference_Cancellation
    [20]
    SINGH A, BHATNAGAR M R, MALLIK R K. Performance of an improved energy detector in multihop cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2):732-743. doi: 10.1109/TVT.2015.2401332
  • Related Articles

    [1]NIU Peng, CHENG Qiang, YANG Congbin, LIU Zhifeng. Multi-objective Topology Optimization of Machine Tool Basic Part Column for Rib Layout[J]. Journal of Beijing University of Technology, 2025, 51(3): 241-249. DOI: 10.11936/bjutxb2023050039
    [2]DOU Huijing, LIANG Xiao, ZHANG Wenqian. Two-dimensional DOA Estimation Based on Compressed Sensing Theory[J]. Journal of Beijing University of Technology, 2021, 47(3): 231-238. DOI: 10.11936/bjutxb2019100002
    [3]WANG Chunrong, ZHAO Jing, XIA Erdong, CHEN Ying. Grabbing Mechanism of Multi-function Rescue Attachment Optimization Design Based on Improved SVM Response Surface Method and NSAG-Ⅱ[J]. Journal of Beijing University of Technology, 2018, 44(10): 1275-1283. DOI: 10.11936/bjutxb2017040028
    [4]LAI Chenguang, DUAN Menghua, CHEN Xiaoxiong, ZHOU Yuting, Kaiping WEN. Multi-objective Optimization of Vehicle Aerodynamic Shape Parameters Based on an Intelligent Algorithm[J]. Journal of Beijing University of Technology, 2017, 43(9): 1320-1327. DOI: 10.11936/bjutxb2016060041
    [5]LI Haitao, LI Jiayu. Performance of Simultaneous Transmit and Receive Cognitive Jammer[J]. Journal of Beijing University of Technology, 2017, 43(4): 574-580. DOI: 10.11936/bjutxb2016090029
    [6]YANG Shipin, LU Xiaohua, BO Cuimei, LI Lijuan, XU Qi. Multi-objective Bio-inspired Optimization Algorithm Based on a P System[J]. Journal of Beijing University of Technology, 2016, 42(10): 1475-1481. DOI: 10.11936/bjutxb2015090086
    [7]DAI Yongbin. Multi-objective Particle Swarm Optimization Algorithm With Double Thresholds Based on Preference Information[J]. Journal of Beijing University of Technology, 2016, 42(4): 492-498. DOI: 10.11936/bjutxb2015020001
    [8]SI Pengbo, LIU Jia, YU Fei, ZHANG Yanhua. Dynamic Spectrum Management Based on Interference and Energy Efficiency for Small-cell Cognitive Networks[J]. Journal of Beijing University of Technology, 2016, 42(2): 223-229. DOI: 10.11936/bjutxb2014090002
    [9]CHEN Song, WANG Sheng, ZHENG Na-e. Spectrum Sensing Performance Analysis Under the Primary User Probability Access/Leave Model[J]. Journal of Beijing University of Technology, 2015, 41(8): 1158-1164. DOI: 10.11936/bjutxb2015010017
    [10]SUN Li-guo, ZHOU Yu-wen, XIE Wen-feng. Research on Spectrum and Early-warning Parameters of Urban Water Distribution Network[J]. Journal of Beijing University of Technology, 2010, 36(10): 1381-1388. DOI: 10.3969/j.issn.0254-0037.2010.10.014

Catalog

    Article views (167) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return