Citation: | WANG Xiujuan, ZHANG Chenxi, TANG Haoyang, TAO Yuanrui. Phishing E-mail Detection Method Based on Density and Distance[J]. Journal of Beijing University of Technology, 2019, 45(6): 546-553. DOI: 10.11936/bjutxb2017110027 |
Phishing E-mail detection methods are mostly focused on the extraction of different E-mail features, which lead the time increasing. To solve this problem, a method based on density and distance was proposed. The method replaces the 42 original mail features with 2 new ones, i.e., features based on density and distance. Then the machine learning classification algorithm was used to detect phishing E-mail. The detection accuracy of the proposed method reaches 99.74%, and time is only 3.39 s, which is 1/20 of the traditional algorithm. Results show that the algorithm has a better detection performance and saves much time.
[1] |
中文互联网数据资讯中心. IDC: 预测2016年全球网民用户数达32亿人[R/OL].[2016-12-22]. http://www.199it.com/archives/422330.html.
|
[2] |
CHOWDHURY M U, ABAWAJY J H, KELAREV A V, et al. Multilayer hybrid strategy for phishing email zero-day filtering[J]. Concurrency & Computation Practice & Experience, 2016, 29(23):623-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0fcdd0be5b711eb4042f5d452c65c6a
|
[3] |
杨明, 杜彦辉, 刘晓娟.网络钓鱼邮件分析系统的设计与实现[J].中国人民公安大学学报(自然科学版), 2012(72):214-226. http://d.old.wanfangdata.com.cn/Periodical/gadxxb-zrkxb201202014
YANG M, DU Y H, LIU X J. The design and implementation of phishing email analysis system[J]. Journal of Chinese People's Public Security University (Natural Science Edition), 2012(72):214-226. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gadxxb-zrkxb201202014
|
[4] |
中国反钓鱼联盟.中国反钓鱼联盟2016年11月月报[R/OL].[2016-12-22]. http://www.apac.cn/.
|
[5] |
WU L, DU X, WU J. Effective defense schemes for phishing attacks on mobile computing platforms[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8):6678-6691. doi: 10.1109/TVT.2015.2472993
|
[6] |
CHOWDHURY M U, ABAWAJY J H, KELAREV A V, et al. Multilayer hybrid strategy for phishing email zero-day filtering[J]. Concurrency & Computation Practice & Experience, 2016, 29(23):56-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0fcdd0be5b711eb4042f5d452c65c6a
|
[7] |
PRAKASH P, KUMAR M, KOMPELLA R R, et al. Phishnet: predictive blacklisting to detect phishing attacks[C]//Proceedings of IEEE International Conference on Computer Communications. Washington DC: IEEE Computer Society, 2010: 1-5.
|
[8] |
邹学强, 张鹏, 黄彩云, 等.基于页面布局相似性的钓鱼网页发现方法[J].通信学报, 2016(增刊1):116-124. http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB2016S1018.htm
ZOU X Q, ZHANG P, HUANG C Y, et al. Phishing Web page discovery method based on similarity of page layout[J]. Journal of Communication, 2016(Suppl 1):116-124. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB2016S1018.htm
|
[9] |
VARSHNEY G, MISRA M, ATREY P K. A survey and classification of Web phishing detection schemes[J]. Security & Communication Networks, 2016, 9:6266-6284. http://cn.bing.com/academic/profile?id=077212eb8544aa106826e29e62e938a8&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
FETTE I, SADEH N, TOMASIC A. Learning to detect phishing emails[C]//International Conference on World Wide Web, WWW 2007. New York: ACM, 2007: 649-656.
|
[11] |
KHONJI M, IRAQI Y, JONES A. Enhancing phishing e-mail classifiers:a lexical URL analysis approach[J]. International Journal to Information Security Research, 2013, 3(1):236-245. http://cn.bing.com/academic/profile?id=16f320eef7aee7a0a8b29f6947f583f6&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
IQBAL F, BINSALLEEH H, FUNG B C M, et al. Mining writeprints from anonymous e-mails for forensic investigation[J]. Digital Investigation, 2010, 7(1/2):56-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3dd1e4741e4572580db4d73661ec2382
|
[13] |
潘锋.特征提取与特征选择技术研究[D].南京: 南京航空航天大学, 2011.
PAN F. Research on feature extraction and feature selection[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2011. (in Chinese)
|
[14] |
TSAI C F, LIN C Y. A triangle area based nearest neighbors approach to intrusion detection[J]. Pattern Recognition, 2010, 43(1):222-229. doi: 10.1016/j.patcog.2009.05.017
|
[15] |
TOOLAN F, CARTHY J. Feature selection for spam and phishing detection[C]//Ecrime Researchers Summit(Ecrime). Washington DC: IEEE Computer Society, 2010: 1-12.
|
[16] |
ZAREAPOOR M, SHAMSOLMOALI P, ALAM M A. Highly discriminative features for phishing email classification by SVD[J]. Advances in Intelligent Systems & Computing, 2015, 339:649-656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214849485
|
[17] |
WANG S, WANG D, CAOYUAN L I, et al. Clustering by fast search and find of density peaks with data field[J]. Chinese Journal of Electronics, 2016, 25(3):397-402. doi: 10.1049/cje.2016.05.001
|
[18] |
郑金彬, 卓义宝.基于密度的分布式聚类算法研究[J].计算机工程, 2008, 34(17):65-67. http://d.old.wanfangdata.com.cn/Periodical/jsjgc200817024
ZHENG J B, ZHUO Y B. Density based distributed clustering algorithm[J]. Computer Engineering, 2008, 34(17):65-67. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjgc200817024
|
[19] |
LIN W C, KE S W, TSAI C F. CANN:an intrusion detection system based on combining cluster centers and nearest neighbors[J]. Knowledge-Based Systems, 2015, 78(1):13-21. http://d.old.wanfangdata.com.cn/Periodical/nmglydcsj200101021
|
[20] |
马萌.基于流形距离的聚类算法研究及其应用[D].西安: 西安电子科技大学, 2009.
MA M. Research and application of clustering algorithm based on manifold distance[D]. Xi'an: Xi'an Electronic and Science University, 2009. (in Chinese)
|
[21] |
WANG X J, ZHAN C X, ZHENG K F. Intrusion detection algorithm based on density, cluster centers, and nearest neighbors[J]. China Communications, 2016, 13(7):24-31. doi: 10.1109/CC.2016.7559072
|
[22] |
DEVARAJU S, RAMAKRISHNAN S. Detection of attacks for IDS using association rule mining algorithm[J]. Iete Journal of Research, 2015, 61(6):624-633. doi: 10.1080/03772063.2015.1034197
|
[23] |
WANG F N. Solving the intrusion detection problem with KPCA-RVM[C]//Design, Manufacturing and Mechatronics. Singapore: World Scientific, 2015: 520-527.
|
[1] | HAN Honggui, LU Shuwu, WU Xiaolong, QIAO Junfei. Abnormal Data Cleaning Method for Municipal Wastewater Treatment Based on Improved Support Vector Machine[J]. Journal of Beijing University of Technology, 2021, 47(9): 1011-1020. DOI: 10.11936/bjutxb2019100014 |
[2] | LI Yujian, ZHANG Ting, HU Haihe. Deep Kernel Mapping Support Vector Machines Based on Multi-layer Perceptron[J]. Journal of Beijing University of Technology, 2016, 42(11): 1652-1661. DOI: 10.11936/bjutxb2016030008 |
[3] | FAN Wen, WANG Ping, YUAN Yue, SUN Hong-yue. Heavy Rain/Hail Classification Model Based on SVM Classification Credibility[J]. Journal of Beijing University of Technology, 2015, 41(3): 361-365. DOI: 10.11936/bjutxb2014080017 |
[4] | HU Fa-huan, LIU Guo-ping, HU Rong-hua, DONG Zeng-wen. Quality Grade Detection in Navel Oranges Based on Machine Vision and Support Vector Machine[J]. Journal of Beijing University of Technology, 2014, 40(11): 1615-1620. |
[5] | ZHONG Lu-sheng, CHEN Li-yong, YANG Hui, GONG Jin-hong, ZHANG Yong-xian, ZHU Zhen-min. Gear Wear Prediction Based on Robust Least Squares Support Vector Machine[J]. Journal of Beijing University of Technology, 2014, 40(7): 1028-1034,1047. |
[6] | LI Yu-jian, LENG Qiang-kui. Design of Support Vector Machines Using Cross Distance Minimization Algorithm[J]. Journal of Beijing University of Technology, 2014, 40(1): 61-67. |
[7] | LIU Xin, TAN Jian-jun, CHEN Wei-zu, LIU Bin, LI Shan, WANG Cun-xin. Support Vector Machine Applied to Predicting the Activity of HIV-1 IN Inhibitors[J]. Journal of Beijing University of Technology, 2013, 39(4): 634-640. |
[8] | NIE Peng, CHEN Xin. Recognition of Tool Cutting State Under Least Squares Support Vector Machine[J]. Journal of Beijing University of Technology, 2012, 38(8): 1148-1152. |
[9] | GAO Xue-jin, WANG Pu, QI Yong-sheng, YAN Ai-jun, ZHANG Hui-qing, GONG Yan-jie. Comparison Studies of LS_ SVM and SVM on Modeling for Fermentation Process[J]. Journal of Beijing University of Technology, 2010, 36(1): 7-12. |
[10] | RAN Ling-hua, RUAN Xiao-gang. An Approach Based on Support Vector Machine for E.coli Promoter Recognition[J]. Journal of Beijing University of Technology, 2004, 30(4): 432-436. |
1. |
魏欢. 复杂网络混合属性数据流密度检测方法研究. 商丘师范学院学报. 2021(09): 6-9 .
![]() |