• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
PENG Yongzhen, QIAN Wenting, WANG Qi, LI Xiyao, ZHANG Qiong, WU Lei, MA Bin. Unraveling Microbial Structure of Activated Sludge in a Full-scale Nitrogen Removal Plant Using Metagenomic Sequencing[J]. Journal of Beijing University of Technology, 2019, 45(1): 95-102. DOI: 10.11936/bjutxb2017090014
Citation: PENG Yongzhen, QIAN Wenting, WANG Qi, LI Xiyao, ZHANG Qiong, WU Lei, MA Bin. Unraveling Microbial Structure of Activated Sludge in a Full-scale Nitrogen Removal Plant Using Metagenomic Sequencing[J]. Journal of Beijing University of Technology, 2019, 45(1): 95-102. DOI: 10.11936/bjutxb2017090014

Unraveling Microbial Structure of Activated Sludge in a Full-scale Nitrogen Removal Plant Using Metagenomic Sequencing

More Information
  • Received Date: September 06, 2017
  • Available Online: August 03, 2022
  • Published Date: January 09, 2019
  • To investigate the vital role of complex microbial communities in activated sludge about the pollutant removal in wastewater treatment plants (WWTPs), metagenomic sequencing on Illumina HiSeq 4000 platform was applied to characterize microbial community, functional profiles and metabolic pathway within activated sludge from a full-scale municipal WWTP. The microbial community was conducted taxonomic and function annotations based on KEEG and COG database. Taxonomic analysis show that the dominant bacterial phyla are Proteobacteria, Bacteroidetes, Nitrospirae, Actinobacteria Chloroflexi and Firmicutes(the abundance are 53.6%, 25.3%, 5.86%, 2.43%, 1.71%, and 1.46%, respectively, of the overall population reads). The key organisms involve Nitrosomonas, Nitrospira and Thauera (approximately 5.82%, 2.26% and 4.30%, respectively), which are the typical ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) bacteria and denitrifying bacteria. These functional microorganisms carry out biological nitrogen removal (BNR). Various key enzymes involved in the global nitrogen cycle are annotated in the activated sludge. The abundance of the functional genes in the BNR is quantified (amo:1 966 hits, hao:1 000 hits, narG:8 204 hits, napA:1 828 hits, nirk:1 854 hits, norB:2 538 hits, and nosZ:5 158 hits).The function genic abundance of nitrite oxidordeuctase is 8 248 hits. This study provides a comprehensive insight into the community structure and diversity of the BNR system, and will provide foundation for optimal operation of nutrient removal systems.

  • [1]
    ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025
    [2]
    JETTEN M S M, LOGEMANN S, MUYZER G, et al. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie van Leeuwenhoek, 1997, 71(1): 75-93. doi: 10.1023-A-1000150219937/
    [3]
    ALBERTSEN M, HANSEN L B, SAUNDERS A M, et al. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal[J]. Isme Journal, 2012, 6(6): 1094. doi: 10.1038/ismej.2011.176
    [4]
    JU F, GUO F, YE L, et al. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years[J]. Environmental Microbiology Reports, 2014, 6(1): 80-89. doi: 10.1111/1758-2229.12110
    [5]
    ALBERTSEN M, HUGENHOLTZ P, SKARSHEWSKI A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013, 31(6): 533-538. doi: 10.1038/nbt.2579
    [6]
    YE L, ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing[J]. Applied Microbiology & Biotechnology, 2013, 97(6): 2681-2690. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3586070
    [7]
    ZHANG T, SHAO M F, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. Isme Journal, 2012, 6(6): 1137. doi: 10.1038/ismej.2011.188
    [8]
    CHAO Y, MA L, YANG Y, et al. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment[J]. Scientific Reports, 2013, 3(12): 3550. http://www.ncbi.nlm.nih.gov/pubmed/24352003
    [9]
    QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. doi: 10.1038/nature08821
    [10]
    FANG H, LIN C, YU Y, et al. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge[J]. Bioresource Technology, 2013, 129(2): 209-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5017c8e6031bd8fa4f94d16417723653
    [11]
    SANAPAREDDY N, HAMP T J, GONZALEZ L C, et al. Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing[J]. Applied & Environmental Microbiology, 2009, 75(6): 1688-1696. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2655459
    [12]
    KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 1999, 27(1): 29-34. doi: 10.1093/nar/27.1.29
    [13]
    HEYLEN K, VANPARYS B, WITTEBOLLE L, et al. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study[J]. Applied & Environmental Microbiology, 2006, 72(4): 2637-2643. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1448990
    [14]
    康鹏亮, 黄廷林, 张海涵, 等.西安市典型景观水体水质及反硝化细菌种群结构[J].环境科学, 2017, 38(12):5174-5183. http://d.old.wanfangdata.com.cn/Periodical/hjkx201712035

    KANG P L, HUANG T L, ZHANG H H, et al. Water quality and diversity of denitrifier community structure of typical scenic water bodies in Xi'an[J]. Environmental Science, 2017, 38(12):5174-5183. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hjkx201712035
    [15]
    XIE C H, YOKOTA A. Reclassification of[Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil[J]. International Journal of Systematic & Evolutionary Microbiology, 2006, 56(5): 1117-1121. http://europepmc.org/abstract/MED/16627664
    [16]
    刘群芳, 朱竞男, 李艳红.翠湖湿地香蒲根结合细菌群落结构分析[C]//中国微生物生态学年会论文集.出版地不详: 出版者不详, 2009: 54-63.

    LIU Q F, ZHU J N, LI Y H. Studies on root-associated bacterial community structure of Typha latifolia Linn in Cuihu Wetland[C]//The annual meeting of Microbial systematic in China.[S.l.]: [s.n.], 2009: 54-63.(in Chinese)
    [17]
    WANG Z, ZHANG X X, LU X, et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing[J]. Plos One, 2014, 9(11): e113603. doi: 10.1371/journal.pone.0113603
    [18]
    LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(7): 237-254. http://www.ncbi.nlm.nih.gov/pubmed/25078442
    [19]
    ZHANG T, SHAO M F, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. Isme Journal, 2012, 6(6):1137. doi: 10.1038/ismej.2011.188
    [20]
    YE K, ZHANG T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. Plos One, 2012, 7(5):e38183. doi: 10.1371/journal.pone.0038183
    [21]
    YANG Y, YU K, XIA Y, et al. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants[J]. Applied Microbiology & Biotechnology, 2014, 98(12): 5709. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=135f03c3d884332e6486c596b3eef568
    [22]
    YE L, ZHANG T, WANG T, et al. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing[J]. Environmental Science & Technology, 2012, 46(24): 13244-13252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73ed1bc7203eed40aad91ec4fa4a1de2
    [23]
    GUO J, PENG Y Z, FANG L, et al. Metagenomic analysis of anammox communities in three different microbial aggregates[J]. Environmental Microbiology, 2016, 18(9):2979. doi: 10.1111/1462-2920.13132
    [24]
    GUO J H, NI B J, PENG Y Z, et al. Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing[J]. Enzyme & Microbial Technology, 2017, 102: 16-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c183394e9a3f6f5589b2336b2402562
    [25]
    PAN Y T, LIU Y, NI B J, et al.Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J].Water Research, 2012, 46:4832-4840. doi: 10.1016/j.watres.2012.06.003
    [26]
    DU R, PENG Y Z, CAO S B, et al.Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J].Applied Microbiology, 2016, 100(4):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47e56ac4c395389a50bde44c933fd044
    [27]
    VADIVELU V M, KELLER J, YUAN Z G, et al. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834. doi: 10.1016/j.watres.2006.11.030
    [28]
    包鹏, 王淑莹, 高瑶远, 等.利用高通量测序技术分析不同溶解氧条件下硝化活性污泥的菌群结构特性[J].北京工业大学学报, 2017, 43(5):801-808. http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract5532.shtml

    BAO P, WANG S Y, GAO Y Y, et al.Effect of dissolved oxygen on microbial community of nitrify activated sudge based on high-throughput squencing technology[J].Journal of Beijing University of Technology, 2017, 43(5):801-808.(in Chinese) http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract5532.shtml
    [29]
    QIAN W T, PENG Y Z, LI X Y, et al.The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition[J].Bioresource Technology, 2017, 243:1247-1250. doi: 10.1016/j.biortech.2017.07.119
    [1]
    汪传新, 马斌, 彭永臻, 等.内源反硝化过程中N2O的产生特征[J].北京工业大学学报, 2015, 41(8):1253-1258. http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract278.shtml

    WANG C X, MA B, PENG Y Z, et al. Nitrous oxide production charactertistic during endogenous denitrification[J]. Journal of Beijing University of Technology, 2015, 41(8):1253-1258.(in Chinese) http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract278.shtml
    [2]
    王淑莹, 操沈彬, 杜睿, 等.污泥发酵液为碳源的反硝化过程亚硝酸盐积累[J].北京工业大学学报, 2014, 40(5):743-750. http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract643.shtml

    WANG S Y, CAO S B, DUI R, et al. Nitrite accumulation during the denitrification process with sludge fermentation liquid as carbon source[J].Journal of Beijing University of Technology, 2014, 40(5):743-750.(in Chinese) http://www.bjutxuebao.com/bjgydx/CN/abstract/abstract643.shtml
    [3]
    彭永臻, 李璐凯, 李夕耀, 等.不同pH值及碱性物质对短程硝化的影响[J].北京工业大学学报, 2017, 43(10):1554-1562. doi: 10.11936/bjutxb2016110024

    PENG Y Z, LI L K, LI X Y, et al. Influence of pH and alkaline substances on shortcut nitrification[J]. Journal of Beinjing University of Technology, 2017, 43(10):1554-1562.(in Chinese) doi: 10.11936/bjutxb2016110024
  • Related Articles

    [1]JIA Tipei, PENG Yi, SUN Shihao, PENG Yongzhen. Influence of pH on the Performance and Microbial Community Structure of Bio-desulfurization System[J]. Journal of Beijing University of Technology, 2023, 49(12): 1358-1367. DOI: 10.11936/bjutxb2023070036
    [2]PENG Yongzhen, WANG Mingqi, PENG Yi, LIU Ying, ZHANG Liang. Effect of Four Different Types of Carbon Sources on Advanced Nitrogen Removal of Secondary Effluent: System Performance and Microbial Communities[J]. Journal of Beijing University of Technology, 2021, 47(10): 1158-1166. DOI: 10.11936/bjutxb2020010016
    [3]GAO Chundi, ZHANG Na, HAN Hui, REN Hao, HOU Chunyan, LI Yue, WANG Chuande. Effect of Carbon Source on Microbial Diversity in Bulking Sludge[J]. Journal of Beijing University of Technology, 2021, 47(2): 169-178. DOI: 10.11936/bjutxb2019120010
    [4]WANG Xiujie, LI Jun, LI Yun, WEI Jia, ZHANG Yanzhuo, ZHAI Jieyi, WANG Siyu, ZHANG Weiguang. Diversity of Bacteria and Functional Bacteria in MBR Shortcut Nitrification System Treating Late Landfill Leachate[J]. Journal of Beijing University of Technology, 2017, 43(9): 1416-1425. DOI: 10.11936/bjutxb2016100036
    [5]JI Shu-lan, CUI Dan-hong, ZHOU Ming-jing, LIU Ying, QIN Zhen-ping. Bacteria Diversity Analysis of Aerobic Granular Sludge for Nitrogen and Phosphorus Removal in Municipal Wastewater Treatment System[J]. Journal of Beijing University of Technology, 2013, 39(7): 1100-1108. DOI: 10.3969/j.issn.0254-0037.2013.07.023
    [6]ZENG Wei, WANG Xiang-dong, LI Bo-xiao, BAI Xin-long, PENG Yong-zhen. Nutrients Removal by Simultaneous Nitrification and Denitrification via Nitrite Pathway From Domestic Wastewater in a Modified University of Cape Town(MUCT) Process[J]. Journal of Beijing University of Technology, 2013, 39(5): 754-760. DOI: 10.3969/j.issn.0254-0037.2013.05.019
    [7]WANG Jun-an, LI Dong, ZHANG Jie, TAO Xiao-xiao, LI Zhan. Coupling Nitrogen Removal Bacteria Based on the ANAMMOX Process[J]. Journal of Beijing University of Technology, 2012, 38(3): 427-431. DOI: 10.3969/j.issn.0254-0037.2012.03.021
    [8]PENG Yong-zhen, GUO Chun-yan, XU Li-jie, LI Xi-yao, YUAN Zhi-guo. Effect of Nitrite on Anaerobic Metabolism of Candidatus Accumulibacter Phosphates[J]. Journal of Beijing University of Technology, 2011, 37(9): 1424-1429. DOI: 10.3969/j.issn.0254-0037.2011.09.024
    [9]ZENG Yan-jun, QIAO Yuan-hua, ZHANG En-ping, XU Xiao-hu, ZHAO Hu, YU Xiao-jun, XU Hong, HU Jin-lin. Force Signal Transfer Pathway and Mechanism in Cell[J]. Journal of Beijing University of Technology, 2004, 30(1): 101-105. DOI: 10.3969/j.issn.0254-0037.2004.01.024
    [10]Dai Qianhuan, Shen Xiaodong, Zheng Qingying. Wholesale Molecular Orbital Calculation of Arbitrary Conjugated Systems and Their Metabolic Intermediates[J]. Journal of Beijing University of Technology, 1994, 20(1): 23-30.
  • Cited by

    Periodical cited type(44)

    1. 邱文轩,林苏丹,吴佳华,施雪卿,王羚. A/O/O-IFAS工艺对洗毛废水的运行效果研究. 青岛理工大学学报. 2025(01): 103-108 .
    2. 唐娜,常宁,沈伟涛,陈苹,张圣虎,朱锐,胡双庆,康国栋,鲁磊磊. 基于宏基因组测序技术揭示渗滤液处理工艺对微生物功能的影响. 鲁东大学学报(自然科学版). 2025(02): 129-139 .
    3. 杨文焕,邓子威,徐岩,王志超,李卫平. 光合细菌对活性污泥微生物群落结构及功能的影响. 中国环境科学. 2024(03): 1314-1323 .
    4. 魏佳欣,罗一鸣,郭伟,刘婉岑,罗文海,李国学,张智烨,亓传仁. 锯末覆盖对沼液贮存过程温室气体排放的影响. 农业环境科学学报. 2024(09): 2104-2116 .
    5. 伍亚龙,杨姗,陈功,张其圣,汪冬冬,唐垚,史梅莓,吕鹏军,王勇. 基于宏基因组学技术解析工业发酵蔬菜中亚硝酸盐形成及降解机理. 食品与发酵工业. 2024(21): 60-67 .
    6. 白萌,毕学军,孙贤鹏,王增花,胡甜甜,赵伟华. 反硝化除磷前置A_2NSBR工艺启动及微生物研究. 水处理技术. 2024(12): 89-95 .
    7. 刘鑫燃,高文钰,唐美怡,彭永臻,崔丹. 电位调控定向富集反硝化生物膜及脱氮效能研究. 北京工业大学学报. 2024(12): 1477-1485 . 本站查看
    8. 庄彦华,唐燕华,杨笑康,罗建文,陶昱明,杨小丽. 改进UCT工艺强化城镇污水脱氮除磷实例研究. 水处理技术. 2023(03): 102-108 .
    9. 魏佳欣,亓传仁,刘婉岑,罗文海,李国学,张智烨. 生物质覆盖对沼液污染气体排放的影响及机制. 中国环境科学. 2023(04): 1744-1756 .
    10. 孙培荣,李大鹏,徐楚天,陈姝彤,汤尧禹. 水丝蚓蚓粪对沉积物微环境及氮磷吸附特性的影响. 环境工程. 2023(08): 8-17 .
    11. 刘敏,房阔,王凯军. AAO+流态化生物载体工艺的菌群结构分析. 中国给水排水. 2023(19): 11-18 .
    12. 唐霞,黄福,李碧清,林学然,邱光磊. 华南地区不同污水处理工艺中硝化菌和反硝化菌的群落结构特征与差异. 给水排水. 2023(10): 44-52 .
    13. 柳蒙蒙,陈亚松,魏源送,齐嵘,钟慧,柴玉峰,陈彦霖,陈梅雪. 寒冷地区城镇污水处理厂氮转化功能菌群和功能基因季节变化特征分析. 给水排水. 2023(10): 38-43+52 .
    14. 李远威,郝凯越,宗永臣,尤俊豪,郭明哲. 高原生境不同水力停留时间下A~2/O工艺活性污泥微生物代谢机制研究. 环境污染与防治. 2022(01): 20-26 .
    15. 蒙小俊,王秋利,龚晓松. 汉江流域上游污水处理厂中微生物多样性及PICRUSt功能预测分析. 安康学院学报. 2022(01): 117-127 .
    16. 梁潇,姚新运,李亮,龚本洲,徐奇奇,周炯,周健. 城镇污水AAOA高标准除磷脱氮技术开发与应用. 环境工程学报. 2022(02): 612-620 .
    17. 翟忠伟,孔雪. 化工园区污水处理工艺技术设计. 辽宁化工. 2022(03): 335-338 .
    18. 李佳,刘杰,林甲,宋新新,李传举,江瀚. 城市污水厌氧氨氧化工艺的菌群分析与效能评估. 环境科学学报. 2022(04): 7-17 .
    19. 刘玉龙,张智锋,张黎,张喆,秦璐,柴国栋,郑兴,王东琦. 进水条件对侧流活性污泥水解工艺性能和微生物的影响. 环境工程. 2022(05): 146-151+158 .
    20. 高春娣,杨箫阳,欧家丽,韩颖璐,程丽阳,彭永臻. 丝状菌膨胀污泥好氧颗粒化稳定性及微生物多样性. 环境科学. 2022(07): 3718-3729 .
    21. 王垚,达方华,周澄,吴鹏,徐乐中. 不同运行负荷下C/N比对CANON工艺脱氮效能影响. 水处理技术. 2022(09): 97-102 .
    22. 陈嘉瑜,苏志国,姚鹏城,黄备,张永明,温东辉. 废水排放对近海环境中抗生素抗性基因和微生物群落的影响. 环境科学. 2022(09): 4616-4624 .
    23. 张海军,王荣钢,杨大卫,康彦涛,邢浩然. 生物脱氮技术在城市污水处理中的应用及工艺优化. 粘接. 2022(10): 110-113 .
    24. 葛栋杰,周紫薇. 生态环境工程技术创新与应用研究. 山西化工. 2022(08): 152-154 .
    25. 孙伟. 生物法脱氮技术在污水处理厂废水处理中的作用研究. 环境科学与管理. 2021(04): 125-130 .
    26. 达方华,王垚,徐乐中,陈茂林. 不同方式启动全自养脱氮组合工艺对比研究. 环境科学与技术. 2021(02): 104-112 .
    27. 吕金,张丹. 皮革废水生物处理过程中细菌多样性及生物强化脱氮研究. 皮革制作与环保科技. 2021(10): 10-11 .
    28. 顾晓丹,黄勇,丁永伟,黄继会,王伟,张俊,陈芳芳. 改良型UNITANK工艺冬季运行特性及微生物群落分析. 环境工程学报. 2021(07): 2480-2487 .
    29. 董浩,吕育财,任立伟,龚大春,沈联兵. 硫酸新霉素废水活性污泥的微生物群落结构解析. 化学与生物工程. 2021(08): 25-31 .
    30. 韩小蒙,白海梅,李明杰,马艳,宋姗姗. 不同水平低水量运行对AAO工艺的影响. 净水技术. 2021(10): 107-112 .
    31. 包文婷,康增彦,王维红. 好氧颗粒污泥研究进展及处理新疆番茄酱废水的应用前景. 应用化工. 2021(10): 2861-2865 .
    32. 宋姗姗,谢震方,白海梅,李明杰,马艳,韩小蒙. 水量冲击对AAO系统中微生物群落结构的影响. 净水技术. 2021(S2): 94-101 .
    33. 张雪,乔雪姣,苏佳,张立羽,余珂. 垃圾渗滤液处理厂活性污泥微生物种群结构和功能分析. 北京大学学报(自然科学版). 2021(05): 927-937 .
    34. 游佳,尚巍,陈轶,张玲玲,顾淼. 典型城市污水处理厂除磷脱氮功能微生物的分布特征. 给水排水. 2021(S2): 123-126 .
    35. 蒙小俊,龚晓松,王秋利. 汉江流域上游城镇污水CAST处理工艺微生物群落结构分析. 安康学院学报. 2020(01): 101-105 .
    36. 赵远哲,杨永哲,王海燕,储昭升,常洋,董伟羊,闫国凯,王欢,李丛宇. 新型填料A/O生物滤池处理低碳氮比农村污水脱氮. 环境科学. 2020(05): 2329-2338 .
    37. 袁林江,马切切,赵杰. 宏组学方法及在污水生物处理系统研究中的应用. 环境科学学报. 2020(08): 2690-2699 .
    38. 张星星,王超超,王垚,徐乐中,吴鹏. 基于不同废污泥源的短程反硝化快速启动及稳定性. 环境科学. 2020(08): 3715-3724 .
    39. 侯晓薇,牛永健,李维维,王光杰,孙洪伟. 高温冲击对亚硝酸盐氧化过程中微生物菌群结构影响. 环境科学. 2020(08): 3773-3780 .
    40. 蒙小俊,王秋利,龚晓松. 城镇污水生物脱氮除磷工艺存在问题的调控措施. 工业水处理. 2020(08): 17-22 .
    41. 蒙小俊,郭楠楠. 低C/N比条件下生物脱氮工艺研究进展. 安康学院学报. 2020(04): 109-115 .
    42. 刘雨馨,王建芳,钱飞跃,陈倩苗,乔伟,沈聪. 低温下全自养脱氮颗粒污泥适应低基质效能. 环境科学. 2020(09): 4161-4168 .
    43. 王维红,董星辽,肖飞,包文婷. 颗粒污泥与絮体污泥占比对番茄酱废水降解效能的影响. 工程科学学报. 2020(10): 1381-1387 .
    44. 吴岩,任相浩,寇莹莹,成宇. 复合微生物菌剂处理高浓度氨氮废水的强化作用. 科学技术与工程. 2020(25): 10544-10549 .

    Other cited types(70)

Catalog

    Article views (696) PDF downloads (91) Cited by(114)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return