Citation: | LI Meng, SI Pengbo, SUN Enchang, ZHANG Yanhua. Delay-tolerant Data Traffic Based on Connected Vehicle Network and Mobile Edge Computing[J]. Journal of Beijing University of Technology, 2018, 44(4): 529-537. DOI: 10.11936/bjutxb2017070032 |
With the explosion in the number of Internet of things (IoT) and connected vehicle networks in smart city, the challenges to meet the demands from both data traffic delivery and data computing are increasingly prominent, and the allocation of network resources has attracted great attention. A novel network architecture based on mobile edge computing (MEC) was proposed in this paper to incorporate connected vehicle networks and IoT networks to transmit the delay-tolerant data and execute the computing tasks. In order to integrate diverse and complex standards and protocols in the same network, the programmable control principle originated from software-define networking (SDN) paradigm was introduced. Moreover, the process of delay-tolerant data transmission and computing node selection in software-defined vehicle network was formulated as a partially observable Markov decision process (POMDP) to minimize the system cost, which consists of both the network overhead and execution time of computing tasks. Simulation results show that the system cost can be decreased efficiently compared with the existing schemes, the processing time of computing tasks can be shorten and the computing efficiency can be improved. Furthermore, the arrival rate of delay-tolerant data can also be ensured within the delay requirements.
[1] |
EJAZ W, NAEEM M, SHAHID A, et al. Efficient energy management for the internet of things in smart cities[J]. IEEE Communications Magazine, 2017, 55(1):84-91. doi: 10.1109/MCOM.2017.1600218CM
|
[2] |
AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of things:a survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4):2347-2376. http://www.mendeley.com/catalog/internet-things-survey-enabling-technologies-protocols-applications/
|
[3] |
BARCELO M, CORREA A, LLORCA J, et al. IoT-cloud service optimization in next generation smart environments[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12):4077-4090. doi: 10.1109/JSAC.2016.2621398
|
[4] |
CENTENARO M, VANGELISTA L, SAUR S, et al. Comparison of collision-free and contention-based radio access protocols for the internet of things[J]. IEEE Transactions on Communication, 2017, 99:1-15. http://ieeexplore.ieee.org/document/7932470
|
[5] |
OH S-M, SHIN J. An efficient small data transmission scheme in the 3GPP NB-IoT system[J]. IEEE Communications Letters, 2017, 21(3):660-663. doi: 10.1109/LCOMM.2016.2632128
|
[6] |
FARRIS I, MILITANO L, NITTI M, et al. Federated edge-assisted mobile clouds for service provisioning in heterogeneous IoT environments[C]//IEEE 2nd World Forum Internet of Things (WF-IoT). New York: IEEE, 2015: 591-596.
|
[7] |
ZHANG Y, ZHANG Y, QIN S, et al. Delay-bounded priority-driven resource allocation for video transmission over multihop networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(7):1184-1196. doi: 10.1109/TCSVT.2014.2302511
|
[8] |
CAI Y, YU F R, BU S. Cloud computing meets mobile wireless communications in next generation cellular networks[J]. IEEE Network, 2014, 28(6):54-49. doi: 10.1109/MNET.2014.6963805
|
[9] |
SI P, HE Y, YAO H, et al. DaVe:offloading delay-tolerant data traffic to connected vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):3941-3953. doi: 10.1109/TVT.2016.2550105
|
[10] |
CHIANG M, ZHANG T. Fog and IoT:an overview of research opportunities[J]. IEEE Internet of Things Journal, 2016, 3(6):854-864. doi: 10.1109/JIOT.2016.2584538
|
[11] |
KUMAR N, ZEADALLY S, RODRIGUES J. Vehicular delay-tolerant networks for smart grid data management using mobile edge computing[J] IEEE Communications Magazine, 2016, 54(10):60-66. doi: 10.1109/MCOM.2016.7588230
|
[12] |
CHEN T, MATINMIKKO M, CHEN X, et al. Software defined mobile networks:concept, survey, and research directions[J] IEEE Communications Magazine, 2015, 53(11):126-133. doi: 10.1109/MCOM.2015.7321981
|
[13] |
HARRI J, FILALI F, BONNET C. Mobility models for vehicular ad networks:a survey and taxonomy[J]. IEEE Communications & Surveys Tutorials, 2009, 11(4):19-41. http://dl.acm.org/citation.cfm?id=2211376
|
[14] |
CHEN X. Decentralized computation offloading game for mobile cloud computing[J] IEEE Transactions Parallel and Distributed Systems, 2015, 26(4):974-983. doi: 10.1109/TPDS.2014.2316834
|
[15] |
ZHAO Q, TONG L, SWAMI A, et al. Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:a POMDP framework[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(3):589-600. doi: 10.1109/JSAC.2007.070409
|
[16] |
CHEN Y, ZHAO Q, SWAMI A. Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors[J]. IEEE Information Theory, 2008, 54(5):2053-2071. doi: 10.1109/TIT.2008.920248
|
[17] |
SI P, YU F R, JI H, et al. Distributed sender scheduling for multimedia transmission in wireless mobile peer-to-peer networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(9):4594-4603. doi: 10.1109/TWC.2009.080550
|
[18] |
ZHU L, YU F R, NING B, et al. Handoff performance improvements in MIMO-enabled communication-based train control systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2):582-593. doi: 10.1109/TITS.2012.2188288
|
[19] |
LI M, YU F R, SI P, et al. Energy-efficient M2M communications with mobile edge computing in virtualized cellular networks[C]//2017 IEEE International Conference on Communications (ICC). New Yoirk: IEEE, 2017: 1-6.
|
[20] |
LI M, YU F R, SI P, et al. Random access and virtual resource allocation in software-defined cellular networks with machine-to-machine (M2M) communications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7):6399-6414. doi: 10.1109/TVT.2016.2633525
|
[21] |
BAI F, SADAGOPAN N, HELMY A. Important: a framework to systematically analyze the impact of mobilityon performance of routing protocols for Adhoc networks[C]//2003 IEEE INFOCOM. New York: IEEE, 2003: 825-835.
|
[22] |
PADMANABHAN S, STEPHEN R, MURTHY C, et al. Training-based antenna selection for PER minimization:a POMDP approach[J]. IEEE Transactions on Communications, 2015, 63(9):3247-3260. doi: 10.1109/TCOMM.2015.2455504
|
1. |
李宁,于晓清,陈炜,王玄,曹凯. 电力物联网移动边缘计算任务卸载策略. 电测与仪表. 2024(04): 155-160 .
![]() | |
2. |
陈华龙,文元桥,黄亚敏,肖长诗. 内河远程控制船舶的云岸船协同计算建模. 华中科技大学学报(自然科学版). 2022(05): 53-58 .
![]() | |
3. |
乔炎,甄彤,李智慧. 基于边缘计算的粮食信息化探究. 中国粮油学报. 2022(08): 36-43 .
![]() | |
4. |
尹静,徐晓林,熊小华. 基于EWIPM的物联网节点信息传输优化仿真. 计算机仿真. 2021(12): 312-315+396 .
![]() | |
5. |
张海波,王子心,贺晓帆. SDN和MEC架构下V2X卸载与资源分配. 通信学报. 2020(01): 114-124 .
![]() | |
6. |
董晓丹,吴琼. 车载云计算系统中资源分配的优化方法. 中国电子科学研究院学报. 2020(01): 92-98 .
![]() | |
7. |
张延华,杨乐,李萌,吴文君,杨睿哲,司鹏搏. 基于Q-learning的工业互联网资源优化调度. 北京工业大学学报. 2020(11): 1213-1221 .
![]() | |
8. |
宋军平,赵高丽. 远程实时课件数据的异步传输更新仿真. 计算机仿真. 2020(11): 199-202+226 .
![]() | |
9. |
强士卿,孙滢. 城市安防场景下基于边缘计算的三维侦测路径规划. 工业控制计算机. 2019(12): 15-17 .
![]() |