Citation: | GONG Xinqi, CAO Tingyi. Five Dimensional Feature Space for Protein Binding Site Residue Prediction[J]. Journal of Beijing University of Technology, 2017, 43(12): 1837-1845. DOI: 10.11936/bjutxb2017070008 |
Correctly understanding and predicting binding site residues is necessary for studying protein interactions and their networks. A novel approach was reported to predict protein interface residues using five dimensional feature space based on residue physical and chemical features. In this method, a grid multiple dimensional feature space was built using standardized feature values. Then, all the surface residues were put into the grids according to their feature values. Finally, the grids were clustered. Interestingly, interface residues prefer some grids clustered together. Excellent prediction result were obtained on a public and data benchmark was verified. This approach not only opens up a new visual angle for binding site residue prediction, but also help to understand protein-protein interactions more deeply.
[1] |
JORDAN R A. EL-MANZALAWY Y, DOBBS D, et al. Predicting protein-protein interface residues using local surface structural similarity[J]. BMC Bioinformatics, 2012, 13(1):1-14. doi: 10.1186/1471-2105-13-1
|
[2] |
FULLER J C, BURGOYNE N J, JACKSON R M. Predicting druggable binding sites at the protein-protein interface[J]. Drug Discovery Today, 2009, 14(3/4):155-161.
|
[3] |
OFRAN Y, ROST B. Predict protein-protein interaction sites from local sequence information[J]. Febs Letters, 2003, 544(1/2/3):236-239. http://www.biomedcentral.com/content/download/xml/s12859-015-0758-y.xml
|
[4] |
LENA P D, NAGATA K, BALDI P. Deep architectures for protein contact map prediction[J]. Bioinformatics, 2012, 28(19):2449-57. doi: 10.1093/bioinformatics/bts475
|
[5] |
HEFFERNAN R, DEHZANGI A, LYONS J, et al. Highly accurate sequence-based prediction of half-sphere expo-sures of amino acid residues in proteins[J]. Bioinformatics, 2016, 32(6):321-328. https://es.scribd.com/doc/18267012/Dictionary-of-DNA-and-Genome-Technology
|
[6] |
MING-MIN L I, LIANG S D, ZHANG J, et al. Structural characterisation and prediction of protein-protein interfaces[J]. Progress in Modern Biomedicine, 2006, 6(6):41-43.
|
[7] |
YOUNG L, JERNIGAN R L, COVELL D G. A role for surface hydrophobicity in protein-protein recognition[J]. Protein Science A Publication of the Protein Society, 1994, 3(5):717-729.
|
[8] |
CAI C Z, HAN L Y, JI Z L, et al. SVM-Prot:web-based support vector machine software for functional classification of a protein from its primary sequence[J]. Nucleic Acids Research, 2003, 31(13):3692-3697. doi: 10.1093/nar/gkg600
|
[9] |
YANG J, YAN W, YANG Z. ResQ:an approach to unified estimation of B-factor and residue-specific error in protein structure prediction[J]. Journal of Molecular Biology, 2016, 428(4):693-701. doi: 10.1016/j.jmb.2015.09.024
|
[10] |
VREVEN T, MOAL I H, VANGONE A, et al. Updates to the integrated protein-protein interaction benchmarks:docking benchmark version 5 and affinity benchmark version 2[J]. Journal of Molecular Biology, 2015, 427(19):3031-3041. doi: 10.1016/j.jmb.2015.07.016
|
[11] |
HWANG H, VREVEN T, JANIN J, et al. Protein-protein docking benchmark version 4.0[J]. Proteins Structure Function & Bioinformatics, 2011, 78(15):3111-3114.
|
[12] |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//International Conference on Knowledge Discovery and Data Mining. Oregon:AAAI Press, 1996:226-231.
|
[13] |
BERNSTEIN P A. Normalization and functional dependencies in the relational data base model[J]. JACM, 1980, 31(89):285-296.
|
[14] |
PARSONS L, HAQUE E, LIU H. Subspace clustering for high dimensional data:a review[J]. ACM SIGKDD Explorations Newsletter, 1931, 6(1):90-105. http://www.math.chalmers.se/Stat/Grundutb/GU/MSA220/S17/SubspaceClust.pdf
|
[15] |
SUN Z W, ZHAO Z. A clustering algorithm based on grid and density with random sampling[J]. Journal of Tianjin University, 2006, 39(5):621-626.
|
[16] |
ANDREATTA M, LAPLAGNE S, LI S C, et al. Prediction of residue-residue contacts from protein families using similarity kernels and least squares regularization[J]. Quantitative Biology, 2014, 15(5):431-436.
|
[17] |
BI F M, WANG W K, CHEN L. DBSCAN:density-based spatial clustering of applications with noise[J]. Journal of Nanjing University, 2012, 48(4):491-498.
|
[18] |
KUMAR K M, REDDY A R M. A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J]. Pattern Recognition, 2016, 58:39-48. doi: 10.1016/j.patcog.2016.03.008
|
[1] | LIU Jing, SUN Yanfeng, HU Yongli. Deep Multi-view Subspace Clustering Based on Adaptive Weight Fusion[J]. Journal of Beijing University of Technology, 2023, 49(7): 758-768. DOI: 10.11936/bjutxb2021070010 |
[2] | JI Qiang, SUN Yanfeng, HU Yongli, YIN Baocai. Review of Clustering With Deep Learning[J]. Journal of Beijing University of Technology, 2021, 47(8): 912-924. DOI: 10.11936/bjutxb2021010013 |
[3] | GUO Limin, LIN Chunhua, GAO Xu, SU Xing. Efficient Clustering Objects for Spatial Network Using CB-graph[J]. Journal of Beijing University of Technology, 2019, 45(6): 524-533. DOI: 10.11936/bjutxb2017120011 |
[4] | DU Yongping, DU Xiaoyan, CHEN Shouqin. Relaxed Hierarchy Structure Construction for Text Classification[J]. Journal of Beijing University of Technology, 2017, 43(8): 1175-1181. DOI: 10.11936/bjutxb2016040059 |
[5] | GAO Ming-xia, YAO Wen-ji, MAO Guo-jun. Exponential Histogram of Cluster Feature for XML Stream[J]. Journal of Beijing University of Technology, 2011, 37(8): 1242-1248. DOI: 10.3969/j.issn.0254-0037.2011.08.020 |
[6] | SHI Heng-hua, HE Jing-sha, XU Xin. Network Monitor Placement Method Based on Network Delay[J]. Journal of Beijing University of Technology, 2009, 35(6): 839-844. DOI: 10.3969/j.issn.0254-0037.2009.06.022 |
[7] | LI Yu-jian. Hierarchical Subtrees Agglomerative Clustering Algorithms[J]. Journal of Beijing University of Technology, 2006, 32(5): 442-446. DOI: 10.3969/j.issn.0254-0037.2006.05.012 |
[8] | LIU Quan-jin, LI Ying-xin, RUAN Xiao-gang. Cancer Informative Gene Identification Based on Statistical Method[J]. Journal of Beijing University of Technology, 2005, 31(2): 122-125. DOI: 10.3969/j.issn.0254-0037.2005.02.003 |
[9] | Huang Zheng, Chen Zuyin. Evaluation on Results of Several Cluter Methods and Utilization of the Cluster Method of Cut-set[J]. Journal of Beijing University of Technology, 1989, 15(1): 18-23. DOI: 10.3969/j.issn.0254-0037.1989.01.003 |
[10] | Huang Zheng, Chen Zuyin. Application of Mathematical Morphology to Clustering[J]. Journal of Beijing University of Technology, 1988, 14(4): 1-8. |