• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
LI Yujie, LI Gaorong. Greedy Variable Screening in Ultra-high Dimensional Partially Linear Varying Coefficient Models[J]. Journal of Beijing University of Technology, 2018, 44(9): 1247-1256. DOI: 10.11936/bjutxb2017060012
Citation: LI Yujie, LI Gaorong. Greedy Variable Screening in Ultra-high Dimensional Partially Linear Varying Coefficient Models[J]. Journal of Beijing University of Technology, 2018, 44(9): 1247-1256. DOI: 10.11936/bjutxb2017060012

Greedy Variable Screening in Ultra-high Dimensional Partially Linear Varying Coefficient Models

More Information
  • Received Date: June 01, 2017
  • Available Online: August 03, 2022
  • Published Date: September 09, 2018
  • In this paper, the partially linear varying coefficient models were established when the predictors of the linear part were ultra-high dimensional, where the dimensionality grew exponentially with the sample size. A greedy profile forward regression (GPFR) method was proposed to finish the variable screening for the ultra-high dimensional linear predictors. Under some regularity conditions, the proposed GPFR method has a screening consistency property was proven. As for the GPFR procedure obtaining a list of the nested models, to determine whether or not to include the candidate predictor in the model of selected ones, an extended Bayesian information criterion (EBIC) was adopted to select the "best" candidate model. The finite-sample performance of the proposed GPFR method was assessed by using simulation studies and real data analysis. The result shows that the proposed GPFR method has advantage in the cases existing high correlation between the predictors and low signal noise ratio.

  • [1]
    FAN J Q, LV J C. Sure independent screening for ultrahigh dimensional feature space[J]. Journal of the Royal Statistical Society:Series B, 2008, 70(5):849-911. doi: 10.1111/rssb.2008.70.issue-5
    [2]
    FAN J Q, SONG R. Sure independence screening in generalized linear models with NP-dimensionality[J]. The Annals of Statistics, 2010, 38(6):3567-3604. doi: 10.1214/10-AOS798
    [3]
    ZHU L P, LI L X, LI R Z, et al. Model-free feature screening for ultrahigh-dimensional data[J]. Journal of the American Statistical Association, 2011, 106(496):1464-1475. doi: 10.1198/jasa.2011.tm10563
    [4]
    LI G R, PENG H, ZHANG J, et al. Robust rank correlation based screening[J]. The Annals of Statistics, 2012, 40(3):1846-1877. doi: 10.1214/12-AOS1024
    [5]
    LI R Z, ZHONG W, ZHU L P. Feature screening via distance correlation learning[J]. Journal of the American Statistical Association, 2012, 107(499):1129-1139. doi: 10.1080/01621459.2012.695654
    [6]
    FAN J Q, MA Y B, DAI W. Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models[J]. Journal of the American Statistical Association, 2014, 109(507):1270-1284. doi: 10.1080/01621459.2013.879828
    [7]
    WANG H S. Forward regression for ultra-high dimensional variable screening[J]. Journal of the American Statistical Association, 2009, 104(488):1512-1524. doi: 10.1198/jasa.2008.tm08516
    [8]
    LIANG H, WANG H S, TASI C L. Profile forward regression for ultrahigh dimensional variable screening in semiparametric partially linear models[J]. Statistica Sinica, 2012, 22(2):531-554. doi: 10.1198/jasa.2008.tm08516
    [9]
    CHENG M Y, HONDA T, ZHANG J T. Forward variable selection for sparse ultra-high dimensional varying coefficient models[J]. Journal of the American Statistical Association, 2016, 111(515):1209-1221. doi: 10.1080/01621459.2015.1080708
    [10]
    LI Y J, LI G R, LIAN H, et al. Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models[J]. Journal of Multivariate Analysis, 2017, 155:133-150. doi: 10.1016/j.jmva.2016.12.006
    [11]
    CHENG M Y, FENG S Y, LI G R, et al. Greedy forward regression for variable screening[J]. Australian & New Zealand Journal of Statistics, 2018, 60(1):20-42. http://d.old.wanfangdata.com.cn/Periodical/yygltj201706005
    [12]
    FAN J Q, HUANG T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models[J]. Bernoulli, 2005, 11(6):1031-1057. doi: 10.3150/bj/1137421639
    [13]
    LAM C, FAN J Q. Profile-kernel likelihood inference with diverging number of parameter[J]. The Annals of Statistics, 2009, 36(5):2232-2260. http://pubmedcentralcanada.ca/pmcc/articles/PMC2630533/
    [14]
    LI R Z, LIANG H. Variable selection in semiparametric regression modeling[J]. The Annals of Statistics, 2008, 36(1):261-286. doi: 10.1214/009053607000000604
    [15]
    ZHAO P X, XUE L G. Variable selection for semi-parametric varying coefficient partially linear models[J]. Statistics & Probability Letters, 2009, 79(20):2148-2157.
    [16]
    WANG H X, ZHU Z Y, ZHOU J H. Quantile regression in partially linear varying coefficient models[J]. The Annals of Statistics, 2009, 37(6):3841-3866. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0911.3501
    [17]
    KAI B, LI R Z, ZOU H. New efficient estimation and vari-able selection methods for semi-parametric varying coefficient partially linear models[J]. The Annals of Statistics, 2011, 39(1):305-332. doi: 10.1214/10-AOS842
    [18]
    HONG Z P, HU Y, LIAN H. Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty[J]. Metrika, 2013, 76(7):887-908. doi: 10.1007/s00184-012-0422-8
    [19]
    LI G R, XUE L G, LIAN H. Semi-varying coefficient models with a diverging number of components[J]. Journal of Multivariate Analysis, 2011, 102:1166-1174. doi: 10.1016/j.jmva.2011.03.010
    [20]
    薛留根.现代统计模型[M].北京:科学出版社, 2012:275-300.
    [21]
    FAN J Q, GIJBELS I. Local polynomial modelling and its applications[M]. London:Chapman & Hall, 1996:57-105.
    [22]
    VOTAVOVÁ H, DOSTALOVA MERKEROVA M, FEJGLOVA K, et al. Transcriptome alterations in maternal and fetal cells induced by tobacco smoke[J]. Placenta, 2011, 32(10):763-770. doi: 10.1016/j.placenta.2011.06.022
    [23]
    DUDOIT S, FRIDLYAND J, SPEED T P. Comparison of discrimination methods for the classification of tumors using gene expression data[J]. Journal of the American Statistical Association, 2002, 97(457):77-87 doi: 10.1198/016214502753479248
    [24]
    GILLIAM M, RIFAS-SHIMAN S, BERKEY C, et al. Maternal gestational diabetes, birth weight and adolescent obesitybirth weight and adolescent obesity[J]. Pediatrics, 2003, 111(3):221-226. doi: 10.1542/peds.111.3.e221
  • Related Articles

    [1]WANG Shufen, BI Yanqi, FANG Bonan, ZHANG Baohui, FANG Jingxuan. Significant Progress of Research on Green Space for People's Stress Relief[J]. Journal of Beijing University of Technology, 2023, 49(9): 1025-1038. DOI: 10.11936/bjutxb2022100022
    [2]LIU Danmin, SHI Feng. Research Progress on Doped and Composite Rare Earth Hexaboride[J]. Journal of Beijing University of Technology, 2022, 48(8): 869-877. DOI: 10.11936/bjutxb2021040023
    [3]LIU Danmin, SHI Zhan, ZHANG Guoqing, ZHANG Yongzhe. Doping Methods and Their Influences on Two-dimensional Photoelectric Device Materials[J]. Journal of Beijing University of Technology, 2022, 48(4): 430-442. DOI: 10.11936/bjutxb2020090011
    [4]CAO Yi, WEI Shou-yu, LIU Jiang, WANG Pu. Research Progress of High-power Yb-doped Superfluorescent Fiber Sources[J]. Journal of Beijing University of Technology, 2015, 41(12): 1789-1798. DOI: 10.11936/bjutxb2015070082
    [5]WANG Jin-shu, XING Peng-fei, LI Li-li, ZHOU Mei-ling. Synthesis and Characterization of Nano-sized Nitrogen Doped TiO2 by Mechanochemical Method[J]. Journal of Beijing University of Technology, 2006, 32(7): 633-637. DOI: 10.3969/j.issn.0254-0037.2006.07.012
    [6]QIU Wen-ge, CHANG Xi-liang. Development of Polymeric Corrosion Inhibitors[J]. Journal of Beijing University of Technology, 2003, 29(2): 210-214. DOI: 10.3969/j.issn.0254-0037.2003.02.022
    [7]CHEN Zhi-lin, WANG Qun, ZHANG Xue-lian, ZUO Tie-yong, FU Feng, YE Ke-lin. Recent Development of Research on Wood / Inorganic Nonmetallic Composites[J]. Journal of Beijing University of Technology, 2003, 29(1): 116-121. DOI: 10.3969/j.issn.0254-0037.2003.01.027
    [8]Rong Jian, Liu Xiaoming, Ren Futian. Development of Highway Capacity Study[J]. Journal of Beijing University of Technology, 1998, 24(2): 121-129.
    [9]She Yuanbin, Yang Jinzong. Research Progress of Phthalocyanine-like Catalysts[J]. Journal of Beijing University of Technology, 1998, 24(2): 115-120.
    [10]She Yuanbin, Shi Fei. Study on a New Type of Styrene-Acrylate Emulsion Polymerization[J]. Journal of Beijing University of Technology, 1996, 22(3): 7-12.
  • Cited by

    Periodical cited type(2)

    1. 李洁,杨济世,刘虎林,刘碧野,赵源,胡文波,吴胜利. 分离打拿极电子倍增器性能提升技术研究. 真空电子技术. 2023(01): 18-24 .
    2. 邓晨晖,韩立,王岩,高召顺,牛耕. 二次电子产额影响因素的研究进展. 材料导报. 2023(24): 18-27 .

    Other cited types(1)

Catalog

    Article views (130) PDF downloads (58) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return