Citation: | LIU Bendong, ZHANG Zhen, LI Desheng. Review on Micro Pump for Microfluidics[J]. Journal of Beijing University of Technology, 2018, 44(6): 812-824. DOI: 10.11936/bjutxb2017050063 |
In this paper, the design method, driving principle and characteristics of piezoelectric, electrostatic, electromagnetic, pneumatic, electro osmosis, surface tension, ferrofluid luid and thermal bubble micropumps were systematically summarized. The domestic and foreign representatives of several types of micro fluid driving pump systems were introduced. The structure, component size, and performance parameters were analyzed and compared. The development trend of the micro pumps was summed up and this paper provides a reference for the design of micro fluid driving.
[1] |
MOHAMED G H. The fluid mechanics of microdevices[J]. Journal of Fluids Engineering, 1999, 121(5):5-33. https://www.researchgate.net/publication/284668895_The_fluid_mechanics_of_microdevices
|
[2] |
HO C M, TAI Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows[J]. Annual Review of Fluid Mechanics, 2003, 30(1):579-612. doi: 10.1146/annurev.fluid.30.1.579
|
[3] |
黄俊, 张建辉, 王守印.多级"Y"型流管无阀压电泵的原理与试验验证[J].光学 精密工程, 2013, 21(2):423-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201302025
HUANG J, ZHANG J H, WANG S Y. Theory and experimental verification on valveless piezoelectric pump with multistage Y-shape tubes[J]. Optics and Precision Engineering, 2013, 21(2):423-430. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201302025
|
[4] |
DAS P K, HASAN A B M T. Mechanical micropumps and their applications: a review[C]//Bsme International Conference on Thermal Engineering. New York: AIP Publishing LLC, 2017: 917-942.
|
[5] |
PAUL S R, NAYAK S K, ANIS A, et al. MEMS-Based controlled drug delivery systems:a short review[J]. Polymer-Plastics Technology and Engineering, 2015, 55(9):965-975. https://www.researchgate.net/publication/283666384_MEMS-Based_Controlled_Drug_Delivery_Systems_A_Short_Review
|
[6] |
ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4):1-16. http://www.xml-data.org/ZGJXGCXB/html/2017/4/y2017_4_766.htm
|
[7] |
李以贵, 黄远, 颜平, 等.利用体块PZT制备膜片式压电微泵[J].光学 精密工程, 2016, 24(5):1072-1079. http://www.cqvip.com/QK/92835A/201605/669025833.html
LI Y G, HUANG Y, YAN P, et al. Fabrication of micro diaphragm piezoelectric pump by using bulk PZT[J]. Optics and Precision Engineering, 2016, 24(5):1072-1079. (in Chinese) http://www.cqvip.com/QK/92835A/201605/669025833.html
|
[8] |
NG T Y, JIANG T Y, LI H, et al. A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump[J]. Journal of Sound & Vibration, 2004, 273(4):989-1006. https://www.deepdyve.com/lp/elsevier/a-coupled-field-study-on-the-non-linear-dynamic-characteristics-of-an-KBtazQfqUw
|
[9] |
PROCHASKA A, NEMIROVSKY Y, DINNAR U. A membrane micropump electrostatically actuated across the working fluid[J]. Journal of Micromechanics & Microengineering, 2005, 15(12):2309. http://www.ingentaconnect.com/content/iop/jmm/2005/00000015/00000012/art00013
|
[10] |
GETPREECHARSAWAS J, PUCHADES I, HOURNBUCKLE B, et al. An electromagnetic MEMS actuator for micropumps[C]//International Conference on Perspective Technologies and Methods in Mems Design. New York: IEEE, 2006: 11-14. http://www.researchgate.net/publication/224760942_An_Electromagnetic_MEMS_Actuator_for_Micropumps
|
[11] |
Al-HALHOULI A T, KILANI M I, BUTTGENBACH S. Development of a novel electromagnetic pump for biomedical applications[J]. Sensors & Actuators A Physical, 2010, 162(2):172-176. https://www.deepdyve.com/lp/elsevier/development-of-a-novel-electromagnetic-pump-for-biomedical-WNliAh8a6k
|
[12] |
JUN D H, SIM W Y, YANG S S. A novel constant delivery thermopneumatic micropump using surface tensions[J]. Sensors & Actuators A Physical, 2007, 139(1/2):210-215. https://www.deepdyve.com/lp/elsevier/a-novel-constant-delivery-thermopneumatic-micropump-using-surface-4yr0DXPzFs
|
[13] |
COONEY C G, TOWE B C. A thermopneumatic dispensing micropump[J]. Sensors & Actuators A Physical, 2004, 116(3):519-524. https://www.deepdyve.com/lp/elsevier/a-thermopneumatic-dispensing-micropump-8phdPYkqyh
|
[14] |
CHEN C H, SANTIAGO J G. A planar electroosmotic micropump[J]. Journal of Microelectromechanical Systems, 2002, 11(6):672-683. doi: 10.1109/JMEMS.2002.805055
|
[15] |
ZENG S, CHEN C H, JR J C M, et al. Fabrication and characterization of electroosmotic micropumps[J]. Sensors & Actuators B Chemical, 2001, 79(2/3):107-114. https://www.researchgate.net/publication/222651237_Fabrication_and_characterization_of_electroosmotic_micropumps
|
[16] |
BURNS M A, MASTRANGELO C H, SAMMARCO T S, et al. Microfabricated structures for integrated DNA analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5556. doi: 10.1073/pnas.93.11.5556
|
[17] |
POLLACK M G. Investigation of electrowetting-based microfluidics for real-time PCR applications[C]//International Conference on Miniouturized Chemical and Biochemical Analysis System. California: μTAS, 2003: 611-619. https://www.researchgate.net/publication/238656538_Investigation_of_electrowetting-based_microfluidics_for_real-time_PCR_applications
|
[18] |
HATCH A, KAMHOLZ A E, HOLMAN G, et al. A ferrofluidic magnetic micropump[J]. Journal of Microelectromechanical Systems, 2001, 10(2):215-221. doi: 10.1109/84.925748
|
[19] |
MUNCHOW G, DADIC D, DOFFING F, et al. Automated chip-based device for simple and fast nucleic acid amplification[J]. Expert Review of Molecular Diagnostics, 2005, 5(4):613. doi: 10.1586/14737159.5.4.613
|
[20] |
JUN T K, KIM C J. Valveless pumping using traversing vapor bubbles in microchannels[J]. Journal of Applied Physics, 1998, 83(11):5658-5664. doi: 10.1063/1.367419
|
[21] |
SUN C, CAN E, DIJKINK R, et al. Growth and collapse of a vapour bubble in a microtube:the role of thermal effects[J]. Journal of Fluid Mechanics, 2009, 632:5-16. doi: 10.1017/S0022112009007381
|
[22] |
MINDLIN R D. High frequency vibrations of piezoelectric crystal plates[J]. International Journal of Solids & Structures, 1972, 8(7):895-906. http://www.txccorp.com/download/tech_paper/201011.pdf
|
[23] |
ZHANG J H, WANG Y, FU J, et al. Advances in technologies of piezoelectric pumping with valves[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33(3):260-273. http://www.cqvip.com/QK/85388X/201603/669785422.html
|
[24] |
KIM J H, KANG C J, KIM Y S. A dispoasble polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc[J]. Microelectronic Engineering, 2004, 71(6):119-124. https://www.sciencedirect.com/science/article/abs/pii/S0167931703005252
|
[25] |
KAN J, YANG Z, PENG T, et al. Design and test of a high-performance piezoelectric micropump for drug delivery[J]. Sensors & Actuators A Physical, 2005, 121(1):156-161. https://www.sciencedirect.com/science/article/pii/S0924424704008581
|
[26] |
MA H K, SU H C, WU J Y. Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber[J]. Sensors & Actuators A Physical, 2011, 171(2):297-305. https://www.researchgate.net/publication/257346509_Study_of_an_innovative_one-sided_actuating_piezoelectric_valveless_micropump_with_a_secondary_chamber
|
[27] |
MA H K, LUO W F, LIN J Y. Development of a piezoelectric micropump with novel separable design for medical applications[J]. Sensors & Actuators A Physical, 2015, 236:57-66. https://www.researchgate.net/publication/283282108_Development_of_a_piezoelectric_micropump_with_novel_separable_design_for_medical_applications
|
[28] |
YAMAGUCHI M, KAWAMURA S, MINAMI K, et al. Distributed electrostatic micro actuator[C]//International Conference on Micro Electro Mechanical Systems. New York: IEEE, 1993: 18-23. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=296944
|
[29] |
TEYMOORI M M, SANI E. Design and simulatio of a novel electrostatic peristaltic micromachined pump for drug delivery applications[J] Sensors and Actuators A physical, 2005, 117(2):222-229 doi: 10.1016/j.sna.2004.06.025
|
[30] |
LEE K S, KIM B, SHANNON M A. An electrostatically driven valve-less peristaltic micropump with a stepwise chamber[J]. Sensors & Actuators A Physical, 2012, 187(6):183-189. https://www.sciencedirect.com/science/article/pii/S0924424712005468
|
[31] |
KIM H. A fully integrates high-efficiency peristaltic 18-stage gas micropump with active microvalves[C]//International Conference on Micro Machanical System. New York: IEEE, 2007: 131-134. https://www.researchgate.net/publication/285301309_A_fully_integrates_high-efficiency_peristaltic_18-stage_gas_micropump_with_active_microvalves
|
[32] |
WRIGHT J A, TAI Y C, CHANG S C. A large-force, fully-integrated MEMS magnetic actuator[C]//International Conference on Solid State Sensors and Actuators Transducers. New York: IEEE Xplore, 1997: 793-796. http://www.researchgate.net/publication/3706761_A_large-force_fully-integrated_MEMS_magnetic_actuator
|
[33] |
YAMAHATA C, LOTTO C, Al-ASSAF E, et al. A PMMA valveless micropump using electromagnetic actuation[J]. Microfluidics and Nanofluidics, 2005, 1:197-207. doi: 10.1007/s10404-004-0007-6
|
[34] |
SHEN M, YAMAHATA C, GIJS M A M. Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator[J]. Microelectronic Engineering, 2008, 85(5/6):1104-1107. http://www.sciencedirect.com/science/article/pii/S0167931707007654
|
[35] |
ZORDAN E, AMIROUCHE F, ZHOU Y. Principle design and actuation of a dual chamber electromagnetic micropump with coaxial cantilever valves[J]. Biomedical Microdevices, 2010, 12(1):55-62. doi: 10.1007/s10544-009-9358-9
|
[36] |
HUANG C W, HUANG S B, LEE G B. Pneumatic micropumps with serially connected actuation chambers[J]. Journal of Micromechanics & Microengineering, 2006, 16(11):2265. doi: 10.1088/0960-1317/16/11/003/meta
|
[37] |
INMAN W, DOMANSKY K, SERDY J, et al. Design, modeling and fabrication of a constant flow pneumatic micropump[J]. Journal of Micromechanics & Microengineering, 2007, 17(5):891-899. http://adsabs.harvard.edu/abs/2007JMiMi..17..891I
|
[38] |
HUANG S B, WU M H, CUI Z, et al. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance[J]. Journal of Micromechanics & Microengineering, 2008, 18(4):045008. http://adsabs.harvard.edu/abs/2008JMiMi..18d5008H
|
[39] |
NI J, HUANG F, WANG B, et al. A planar PDMS micropump using in-contact minimized-leakage check valves[J]. Journal of Micromechanics & Microengineering, 2010, 20(9):095033. http://europepmc.org/articles/PMC3915938
|
[40] |
DEBESSET S, HAYDEN C J, DALTON C, et al. An AC electroosmotic micropump for circular chromatographic applications[J]. Lab on A Chip, 2004, 4(4):396-400. doi: 10.1039/b314123c
|
[41] |
江涛. 基于MEMS技术的直流电渗流微泵的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D276723
JIANG T. Research on DC electroosmotic flow micropump based on the technology of MEMS[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D276723
|
[42] |
JOO S, CHUNG T D, KIM H C. A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces[J]. Sensors & Actuators B Chemical, 2007, 123(2):1161-1168. https://www.sciencedirect.com/science/article/pii/S0925400506007490
|
[43] |
SEIBEL K, SCHOLER L, SCHAFER H, et al. A programmable planar electroosmotic micropump for lab-on-a-chip applications[J]. Journal of Micromechanics & Microengineering, 2008, 18(2):236-246. doi: 10.1088/0960-1317/18/2/025008
|
[44] |
CHANG Y H, LEE G B, HUANG F C, et al. Integrated polymerase chain reaction chips utilizing digital microfluidics[J]. Biomedical Microdevices, 2006, 8(3):215. doi: 10.1007/s10544-006-8171-y
|
[45] |
BERTHIER E, BEEBE D J. Flow rate analysis of a surface tension driven passive micropump[J]. Lab on A Chip, 2007, 7(11):1475. doi: 10.1039/b707637a
|
[46] |
ZHANG T, CUI T. High-performance surface-tension-driven capillary pumping based on layer-by-layer self assembly of TiO2 nanoparticles[C]//Solid-State Sensors, Actuators and Microsystems Conference. New York: IEEE, 2011: 606-609. http://www.researchgate.net/publication/252024347_High-performance_surface-tension-driven_capillary_pumping_based_on_layer-by-layer_self_assembly_of_TiO2_nanoparticles
|
[47] |
SHABANI R, CHO H J. Active surface tension driven micropump using droplet/meniscus pressure gradient[C]//Solid-State Sensors, Actuators and Microsystems Conference. New York: IEEE, 2012: 1296-1299. http://www.sciencedirect.com/science/article/pii/S092540051200528X
|
[48] |
AHN J J, OH J G, CHOI B. A novel type of a microfluidic system using ferrofluids for an application of μ-TAS[J]. Microsystem Technologies, 2004, 10(8):622-627. http://dl.acm.org/citation.cfm?id=1031599
|
[49] |
YAMAHATA C, CHASTELLAIN M, PARASHAR V K, et al. Plastic micropump with ferrofluidic actuation[J]. Journal of Microelectromechanical Systems, 2005, 14(1):96-102. doi: 10.1109/JMEMS.2004.839007
|
[50] |
CHANG Y J, HU C Y, LIN C H. A microchannel immunoassay chip with ferrofluid actuation to enhance the biochemical reaction[J]. Sensors & Actuators B Chemical, 2013, 182(6):584-591. https://www.deepdyve.com/lp/elsevier/a-microchannel-immunoassay-chip-with-ferrofluid-actuation-to-enhance-9p8viqIGgo
|
[51] |
ASHOURI M, SHAFⅡ M B, MOOSAVI A, et al. A novel revolving piston minipump[J]. Sensors & Actuators B Chemical, 2015, 218:237-244. http://www.sciencedirect.com/science/article/pii/S0925400515005560
|
[52] |
TORNIAINEN E D, GOVYADINOV A N, MARKEL D P, et al. Bubble-driven inertial micropump[J]. Physics of Fluids, 2012, 24(12):178-179. https://www.researchgate.net/profile/Alexander_Govyadinov2/publication/299285049_2012_Bubble-driven_Inertial_Micropump_PoF12/links/56f0527c08ae70bdd6c948d3.pdf?origin=publication_detail
|
[53] |
刘本东, 孙建闯, 侯岳鹏, 等.热气泡式微流体驱动器的研究进展[J].北京工业大学学报, 2016, 42(8):1129-1137. doi: 10.11936/bjutxb2015060017
LIU B D, SUN J C, HOU Y P, et al. Review of thermal bubble micro-actuators for micro-fluidics[J]. Journal of Beijing University of Technology, 2016, 42(8):1129-1137. (in Chinese) doi: 10.11936/bjutxb2015060017
|
[54] |
JUNG J Y, KWAK H Y. Fabrication and testing of bubble powered micropumps using embedded microheater[J]. Microfluidics and Nanofluidics, 2007, 3(2):161-169. doi: 10.1007/s10404-006-0116-5
|
[55] |
WANG B, XU J L, ZHANG W, et al. A new bubble-driven pulse pressure actuator for micromixing enhancement[J]. Sensors & Actuators A Physical, 2011, 169(1):194-205. https://www.deepdyve.com/lp/elsevier/a-new-bubble-driven-pulse-pressure-actuator-for-micromixing-7mdf0wYT1Q
|
[56] |
HOU Y P, LIU B D, YANG J H. Research on a large power thermal bubble micro-ejector with induction heating[J]. Microsystem Technologies, 2016, 22(1):103-108. doi: 10.1007/s00542-014-2367-5
|
[57] |
侯岳鹏. 感应加热的气泡微喷系统设计和实验研究[D]. 北京: 北京工业大学, 2015: 60-65. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2961262
HOU Y P. The experimental study and design of the thermal bubble micro-eject system with induction heating[D]. Beijing: Beijing University of Technology, 2015: 60-65. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2961262
|
[58] |
LIU B D, SUN J C, LI D S, et al. A high flow rate thermal bubble-driven micropump with induction heating[J]. Microfluidics & Nanofluidics, 2016, 20(11):155. doi: 10.1007%2Fs10404-016-1822-2
|