• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
TAN Jianjun, ZHOU Ziyun, HAN Xiaoding, HAN Dan, WANG Cunxin, LI Chunhua, ZHANG Xiaoyi. Relationship Between Structure and Dissociation Rates of Antiviral Compounds[J]. Journal of Beijing University of Technology, 2017, 43(12): 1857-1864. DOI: 10.11936/bjutxb2017040050
Citation: TAN Jianjun, ZHOU Ziyun, HAN Xiaoding, HAN Dan, WANG Cunxin, LI Chunhua, ZHANG Xiaoyi. Relationship Between Structure and Dissociation Rates of Antiviral Compounds[J]. Journal of Beijing University of Technology, 2017, 43(12): 1857-1864. DOI: 10.11936/bjutxb2017040050

Relationship Between Structure and Dissociation Rates of Antiviral Compounds

More Information
  • Received Date: April 26, 2017
  • Available Online: August 03, 2022
  • Published Date: December 09, 2017
  • To solve the problem of how to screen out more effective antiviral compounds, the relationship between dissociation rate (koff) and antiviral drug structure was studied in this research. The theoretical basis is that koff is often used to evaluate the activity of the drug in the open system of the human body. The molecular descriptor of each antiviral compound was calculated by using molecular descriptor software, and the descriptors were screened by multiple stepwise regression analysis, partial least squares method and genetic algorithm. Then, the support vector machine (SVM) and BP neural network were used to establish the prediction model of antiviral compound structure and dissociation rate koff value, and the model was verified. Results show that this experiment screens out the descriptors with good predictive power, and the two predictive models are proved to be reasonable and have guiding significance for the future development of antiviral drugs.

  • [1]
    郭颖, 郭宗儒.药物与受体靶标结合动力学对体内药效的影响[J].中国药物化学杂志, 2014(1):70-77. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgyh201401016&dbname=CJFD&dbcode=CJFQ

    GUO Y, GUO Z R. Significance of binding kinetics in drug efficacy[J]. Chinese Journal of Medicinal Chemistry, 2014(1):70-77. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgyh201401016&dbname=CJFD&dbcode=CJFQ
    [2]
    郭颖, 郭宗儒.从噻托溴铵谈药物与受体的结合动力学[J].中国新药杂志, 2013(20):2353-2357. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxyz201320006&dbname=CJFD&dbcode=CJFQ

    GUO Y, GUO Z R. Drug-receptor binding kinetics:tiotropium bromide as an example[J]. Chinese Journal of New Drugs, 2013(20):2353-2357. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxyz201320006&dbname=CJFD&dbcode=CJFQ
    [3]
    CARROLL M J, MAULDIN R V, GROMOVA A V, et al. Evidence for dynamics in proteins as a mechanism for ligand dissociation[J]. Natl Chen Biol, 2012, 8(3):246-252. doi: 10.1038/nchembio.769
    [4]
    DROR R O, PAN A C, ARLOW D H, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors[J]. Proc Natl Acad Sci USA, 2011, 108(32):13118-13123. doi: 10.1073/pnas.1104614108
    [5]
    SHAN Y, KIM E T, STWOOD M P, et al. How does a drug molecule find its target binding site?[J]. J Am Chem Soc, 2011, 133(24):9181-9183. doi: 10.1021/ja202726y
    [6]
    陈宪. 基于OECD准则对QSAR/QSPR模型几个重要问题的研究[D]. 长沙: 中南大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014403428.htm

    CHEN X. Studies on a few key problems of QSAR/QSPR modeling based on the OECD principles[D]. Changsha:Zhongnan University, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10533-1014403428.htm
    [7]
    MILLER D C. Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target[J]. Medicinal Chemistry Communication, 2012, 3(3):449-452. http://pubs.rsc.org/en/Content/ArticleLanding/2012/MD/c2md00270a#!divAbstract
    [8]
    于晓庆. 基于支持向量机的生物数据分析方法研究[D]. 上海: 上海师范大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10270-1012455414.htm

    YU X Q. The study of biological data analysis method based on support vector machines[D]. Shanghai:Shanghai Normal University, 2012. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10270-1012455414.htm
    [9]
    章建文. 基于压电阻抗技术的焊接结构健康监测研究[D]. 南京: 南京航空航天大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011253479.htm

    ZHANG J W. Research onwelding structure health monitoring using piezoelectric impedance technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10287-1011253479.htm
    [10]
    JOHAN W, ELDAR A, VERA B, et al. Resolution of the interaction mechanisms and characteristics of non-nucleoside inhibitors of hepatitis C virus polymerase. Antiviral Research, 2013, 97:356-368. doi: 10.1016/j.antiviral.2012.12.027
    [11]
    GUANGHUI Y, JEROME D, BAOCHANG F, et al. Biochemical study of the comparative inhibition of hepatitis C virus RNA polymerase by VX-222 and filibuvir[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(2):830-837. doi: 10.1128/AAC.05438-11
    [12]
    SOFIA S G, ANGELICA E, BENJAMIN S, et al. Identification of weak points of hepatitis C virus NS3 protease inhibitors using surface plasmon resonance biosensor-based interaction kinetic analysis and genetic variants[J]. J Med Chem, 2014, 57:1802-1811. doi: 10.1021/jm401690f
    [13]
    RAVI R, SHAWN M, SARAH K S, et al. Inhibition and binding kinetics of the hepatitis C virus NS3 protease inhibitor ITMN-191 reveals tight binding and slow dissociative behavior[J]. Biochemistry, 2009, 48:2559-2568. doi: 10.1021/bi900038p
    [14]
    ONA B, AMOREENA C C, RUTH W, et al. Binding kinetics, potency, and selectivity of the hepatitis C virus NS3 protease inhibitors GS-9256 and vedroprevir[J]. Biochimica Et Biophysica Acta, 2014, 1840(12):3292-3298. doi: 10.1016/j.bbagen.2014.08.002
    [15]
    ORIGENE N, BENOIT D, LEEN V, et al. 1a/1b subtype profiling of nonnucleoside polymerase inhibitors of hepatitis C virus[J]. Journal of Virology, 2010, 84(6):2923-2934. doi: 10.1128/JVI.01980-09
    [16]
    MATTHIS G, GORAN D, HELENA D. Mechanistic and kinetic characterization of hepatitis C virus NS3 protein interactions with NS4A and protease inhibitors[J]. J Mol Recognit, 2011, 24:60-70. doi: 10.1002/jmr.1023
    [17]
    JOHAN W, ELDAR A, VERA B, et al. Resolution of the interaction mechanisms and characteristics of non-nucleoside inhibitors of hepatitis C virus polymerase[J]. Antiviral Research, 2013, 97:356-368. doi: 10.1016/j.antiviral.2012.12.027
    [18]
    MARIA V F, JOANNE S, GIUSEPPE C, et al. HCV-NS3 inhibitors:determination of their kinetic parameters and mechanism[J]. Biochimica Et Biophysica Acta, 2009, 1794:1441-1448. doi: 10.1016/j.bbapap.2009.06.004
    [19]
    ASHA V, CAROLNE M P. Simeprevir:first global approval[J]. Drugs, 2013, 73:2093-2106. doi: 10.1007/s40265-013-0153-9
    [20]
    NATHALIE G, ZHAO S P, OLIVER H, et al. Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335[J]. Journal of Biological Chemistry, 2011, 286(13):11434-11443. doi: 10.1074/jbc.M110.211417
    [21]
    HAO L, PETER J T. Drug-target residence time:critical information for lead optimization[J]. Curr Opin Chem Biol, 2010, 14(4):467-474. doi: 10.1016/j.cbpa.2010.06.176
    [22]
    DAVID R. L, HIMADRI K. S, LIN Z Y, et al. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors[J]. Biochemistry, 2008, 47:13481-13488. doi: 10.1021/bi801372d
    [23]
    EDWARD P G, BENJAMIN S, MARGARET J G, et al. Potent inhibitors of HIV-1 integrase display a two-step, slow-binding inhibition mechanism which is absent in a drug-resistant T66I/M154I mutant[J]. Biochemistry, 2009, 48:1644-1653. doi: 10.1021/bi802141y
    [24]
    KENDRA E H, WANG R L, FELIX D, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(10):4552-4559. doi: 10.1128/AAC.00157-11
    [25]
    CYNTHIA F. S, LOTTA V, U. HELENA D. Improved structure-activity relationship analysis of HIV-1 protease inhibitors using interaction kinetic data[J]. J Med Chem, 2004, 47:5953-5961. doi: 10.1021/jm0499110
    [26]
    WESLEY S, MARKKU H, ANDERS K, et al. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors[J]. J Med Chem, 2002, 45:5430-5439. doi: 10.1021/jm0208370
    [27]
    DAN B, MICHEL M, U. HELENA D. Biosensor-based screening and characterization of HIV-1 inhibitor interactions with Sap 1, Sap 2, and Sap 3 from Candida albicans[J]. Journal of Biomolecular Screening, 2006, 11(2):165. doi: 10.1177/1087057105284270
    [28]
    PAUL L D, SUSAN P J, DAWN L H, et al. Dissociation and association of the HIV-1 protease dimer subunits:equilibria and rates[J]. Biochemistry, 1994, 33:98-105. doi: 10.1021/bi00167a013
    [29]
    PER-OLOF M, WESLEY S, MARKKU H, et al. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors[J]. J Med Chem, 2002, 45:5430-5439. doi: 10.1021/jm0208370
    [30]
    ALBERTA S, EMMANUELE C, SAMANTA V, et al. Slow binding-tight binding interaction between benzimidazol-2-one inhibitors and HIV-1 reverse transcriptase containing the lysine 103 to asparagine mutation[J]. Antiviral Research, 2010, 86:268-275. doi: 10.1016/j.antiviral.2010.03.008
    [31]
    MATTHIS G, TORSTEN U, U. HELENA D. Interaction kinetic characterization of HIV-1 reverse transcriptase non-nucleoside inhibitor resistance[J]. J Med Chem, 2006, 49:2375-2387. doi: 10.1021/jm0504050
    [32]
    ROBERT A C, DAVID L P, THOMAS D M. Drug-target residence time and its implications for lead optimization[J]. Nature Reviews Drug Discovery, 2006, 5(9):730-739. doi: 10.1038/nrd2082
    [33]
    WANG T, CHEN S, SUN J, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections[J]. Journal of Antimicrobial Chemotherapy, 2013, 69(2):463-470. https://www.researchgate.net/profile/Taotao_Wang/publications
    [34]
    NAVEA S, TAULER R, JUAN A. Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure.[J]. Analytical Biochemistry, 2004, 336(2):231-242. https://www.sciencedirect.com/science/article/pii/S0003269704008346
    [35]
    李鹏霞. 基于偏最小二乘和支持向量机的生物分子的定量结构-活性/性质关系研究[D]. 兰州: 西北师范大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10736-1011300765.htm

    LI P X. Quantitative structure-activity/property relationship studies in biomolecules based on partial least squares and support vector machine[D]. Lanzhou:Northwest Normal University, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10736-1011300765.htm
    [36]
    张娟. 潜变量统计建模方法的发展演化过程及其演化规律研究[D]. 济南: 山东财经大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10456-2010160333.htm

    ZHANG J. Development of latent variable statical modeling techniques and its evolution of rule[D]. Jinan:Shandong Economic University, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10456-2010160333.htm
    [37]
    张晓丽. 偏最小二乘回归分析若干问题的研究[D]. 长春: 东北师范大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10200-2010178822.htm

    ZHANG X L. Researeh on a number of issues related to partial least squares regression analysis[D]. Changchun:Northeast Normal University, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10200-2010178822.htm
    [38]
    GARUTI L, ROBERTI M, BOTTEGONI G. Benzimidazole derivatives as kinase inhibitors[J]. Current Medicinal Chemistry, 2014, 21(20):2284-2298. doi: 10.2174/0929867321666140217105714
    [39]
    NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12):1565-1567. doi: 10.1038/nbt1206-1565
    [40]
    MASAKI B, YUSUKE K, WEI C, et al. Development of a sugar-binding residue prediction system from protein sequences using support vector machine[J]. Computational Biology and Chemistry, 2016, 66:36-43. https://www.sciencedirect.com/science/article/pii/S1476927116301104
    [41]
    SUN X D, HUANG R B. Prediction of protein structural classes using support vector machines[J]. Amino Acids, 2006, 30(4):469-475. doi: 10.1007/s00726-005-0239-0
    [42]
    ADRIANA M, BOGDAN Z, ADRIAN O, et al. Mapping vegetation communities of the karkonosze national park using APEX hyperspectral data and support vector machines[J]. Miscellanea Geographica, 2014, 18(2):23-29. https://www.degruyter.com/view/j/mgrsd.2014.18.issue-2/mgrsd-2014-0007/mgrsd-2014-0007.xml
    [43]
    李佳庆. 最小二乘支持向量机在软测量建模中的应用[D]. 南京: 南京邮电大学, 2015. http://www.cqvip.com/Main/Detail.aspx?id=15731481

    LI J Q. Application of LSSVM in soft sensor modeling[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=15731481
    [44]
    杨光, 刘俏, 代蕊, 等. BP神经网络预测Bacillus amyloliquefaciens Q-426发酵产物活性[J].计算机与应用化学, 2013(9):1055-1058. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsyh201309022&dbname=CJFD&dbcode=CJFQ

    YANG G, LIU Q, DAI R, et al. Predicting antibacterial activity of Bacillus amyloliquefaciens Q-426 in shake flask culture based on BP neural network[J]. Computers and Applied Chemistry, 2013(9):1055-1058. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsyh201309022&dbname=CJFD&dbcode=CJFQ
    [45]
    王炳萱. LM优化算法和神经网络预测控制在非线性系统中的研究[D]. 太原: 太原理工大学, 2016. http://d.g.wanfangdata.com.cn/Thesis_D01008634.aspx

    WANG B X. Research on LM optimization algorithm and neural network predictive control in nonlinear system[D]. Taiyuan:Taiyuan University of Technology, 2016. (in Chinese) http://d.g.wanfangdata.com.cn/Thesis_D01008634.aspx
    [46]
    吕娟. 蛋白酶体抑制剂的定量构效关系及分子设计研究[D]. 重庆: 重庆大学, 2012. http://d.wanfangdata.com.cn/Thesis/Y2151769

    LV J. QSAR and molecular design studies of proteasome inhibitors[D]. Chongqing:Chongqing University, 2012. (in Chinese) http://d.wanfangdata.com.cn/Thesis/Y2151769
    [47]
    肖晓, 张敏.支持向量机多分类问题研究[J].淮海工学院学报, 2014(3):28-31. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hhgb201403010&dbname=CJFD&dbcode=CJFQ

    XIAO X, ZHANG M. Research on the multi-class classification problem of support vector machine[J]. Journal of Huaihai Institute of Technology, 2014(3):28-31. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hhgb201403010&dbname=CJFD&dbcode=CJFQ
    [48]
    周源. 蛋白质-蛋白质相互作用的简易预测工具开发与实例研究[D]. 北京: 中国农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10019-1015592935.htm

    ZHOU Y. Protein-protein interaction:simple prediction tool development and studies on specific cases[D]. Beijing:China Agricultural University, 2015. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10019-1015592935.htm
    [49]
    刘维群, 李元臣. BP网络中隐含层节点优化的研究[J].交通与计算机, 2005(2):83-86. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jtjs200502025&dbname=CJFD&dbcode=CJFQ

    LIU W Q, LI Y C. Research on optimization of implicit layer node in BP network[J]. Traffic and Computer, 2005(2):83-86. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jtjs200502025&dbname=CJFD&dbcode=CJFQ
    [50]
    谭建军, 韩晓丁, 李春华, 等. 一种基于支持向量机(support vector machine, SVM)对抗病毒类抑制剂离解速率koff值进行预测的方法: CN201510919482. 5[P]. 2016-03-30.
  • Related Articles

    [1]LI Yang, WEI Zhaoyong, GAO Guohua, ZHAO Weidong, CHEN Ping. Inverse Kinematics Solution of Rescue Robotic Arm Based on BP Neural Network[J]. Journal of Beijing University of Technology, 2022, 48(8): 805-811. DOI: 10.11936/bjutxb2021020007
    [2]CHU Hongyan, ZHAO Kailin, CHENG Qiang. Equivalent Stress Analysis and Neural Network Prediction of Disk Forgings[J]. Journal of Beijing University of Technology, 2021, 47(2): 103-111. DOI: 10.11936/bjutxb2019080014
    [3]WANG Zongjie, XING Mingfeng, WANG Hongbo. Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network[J]. Journal of Beijing University of Technology, 2017, 43(1): 8-12. DOI: 10.11936/bjutxb2016040071
    [4]LIU Jing-wei, WANG Pu, YANG Lei. Complex System Pattern Recognition Method Based on Adaptive Wavelet Neural Network[J]. Journal of Beijing University of Technology, 2014, 40(6): 843-850. DOI: 10.3969/j.issn.0254-0037.2014.06.008
    [5]CHU Hong-yan, LI Peng, CAI Li-gang. Intelligent Monitoring Technology of Printing Process Quality Based on Control Chart and Neural Network[J]. Journal of Beijing University of Technology, 2012, 38(3): 340-344. DOI: 10.3969/j.issn.0254-0037.2012.03.005
    [6]JIANG Gui-yan, CHANG An-de, NIU Shi-feng, CONG Yu-liang, CHENG De-ming, WANG Qiu-lan. Dynamic Predictability Analysis for Traffic Data Serials Based on BP Neural Network[J]. Journal of Beijing University of Technology, 2011, 37(7): 1019-1026. DOI: 10.3969/j.issn.0254-0037.2011.07.010
    [7]XU Zhi, YANG Xiao-kuan, ZHAO Xiao-hua, LI Ling-jie. Car Following Model Under Emergency Evacuation Situation Based on the BP Artificial Neural Network[J]. Journal of Beijing University of Technology, 2011, 37(6): 882-887. DOI: 10.3969/j.issn.0254-0037.2011.06.013
    [8]QI Jian-ling. Model of Switched Reluctance Motor Based on Neural Networks[J]. Journal of Beijing University of Technology, 2006, 32(5): 410-415. DOI: 10.3969/j.issn.0254-0037.2006.05.006
    [9]GAO Ai-xia, CHEN Yan-yan, RONG Jian. The Road Section Actual Capacity Based on the BP Neural Network[J]. Journal of Beijing University of Technology, 2004, 30(4): 462-465. DOI: 10.3969/j.issn.0254-0037.2004.04.016
    [10]Qin Hong, Bai Naibin. A Study on QSAR of Environmental Pollution Based on Back-Propagation Neural Networks[J]. Journal of Beijing University of Technology, 1994, 20(3): 91-96.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (219) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return