• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
TAN Jianjun, MEN Jingrui, SUN Hongliang, HE Liqun, ZHANG Yiping. Preliminary Exploration of Improving Predictive Capability of Three Dimensional Quantitative Structure Activity Relationship Models[J]. Journal of Beijing University of Technology, 2018, 44(1): 151-160. DOI: 10.11936/bjutxb2017040020
Citation: TAN Jianjun, MEN Jingrui, SUN Hongliang, HE Liqun, ZHANG Yiping. Preliminary Exploration of Improving Predictive Capability of Three Dimensional Quantitative Structure Activity Relationship Models[J]. Journal of Beijing University of Technology, 2018, 44(1): 151-160. DOI: 10.11936/bjutxb2017040020

Preliminary Exploration of Improving Predictive Capability of Three Dimensional Quantitative Structure Activity Relationship Models

More Information
  • Received Date: April 12, 2017
  • Available Online: August 03, 2022
  • Published Date: January 09, 2018
  • To solve the problem that the three-dimensional quantitative structure-activity relationship (3D-QSAR) model is not ideal when using the model to predict the biological activity of the new compounds, two new consensus models were established to improve the prediction ability of the model. A different weight to each submodule (named weighted consensus model, WCM) was added to one of the consensus models. In order to construct WCM, multiple linear regression (MLR) methods were used to calculate different weight coefficients for each submodule. Another consensus model was constructed from the average of the predicted values for each sub-model obtained in the literature (named average consensus model, ACM). Results show that the consensus model can improve the prediction ability when 0.5 < q2 ≤ 0.8, but it can't improve the 3D-QSAR model's prediction ability when q2 > 0.8. This result can help to improve the prediction of the model and the design of new high activity inhibitors.

  • [1]
    GADHE C G, KOTHANDAN G, CHO S J. Binding site exploration of CCR5 using in silico methodologies:a 3D-QSAR approach[J]. Archives of Pharmacal Research, 2013, 36(1):6-31. doi: 10.1007/s12272-013-0001-1
    [2]
    VILAR S, COSTANZI S. Predicting the biological activities through QSAR analysis and docking-based scoring[J]. Methods Mol Biol, 2012, 914(914):271-284. doi: 10.1007/978-1-62703-023-6_16
    [3]
    HELGUERA A M, PÉREZ-GARRIDO A, GASPAR A, et al. Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors[J]. European Journal of Medicinal Chemistry, 2013, 59:75-90. doi: 10.1016/j.ejmech.2012.10.035
    [4]
    SHAHLAEI M, FASSIHI A, SAGHAIE L, et al. Computational evaluation of some indenopyrazole derivatives as anticancer compounds; application of QSAR and docking methodologies[J]. Journal of Enzyme Inhibition & Medicinal Chemistry, 2011, 28(1):16-32. http://www.oalib.com/references/4659790
    [5]
    WIGGERS H J, ROCHA J R, CHELESKI J, et al. Integration of ligand-and target-based virtual screening for the discovery of cruzain inhibitors[J]. Qsar & Combinatorial Science, 2011, 30(6/7):565-578. http://www.producao.usp.br/handle/BDPI/31739
    [6]
    ZAKHAROV A V, PEACH M L, SITZMANN M, et al. Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes[J]. Future Medicinal Chemistry, 2012, 4(15):1933-1944. doi: 10.4155/fmc.12.152
    [7]
    TETKO I V, SUSHKO I, PANDEY A K, et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis:focusing on applicability domain and overfitting by variable selection[J]. Journal of Chemical Information & Modeling, 2008, 48(9):1733-1746. doi: 10.1021/ci800151m?src=recsys
    [8]
    HU R J, BARBAULT F, DELAMAR M, et al. Receptor-and ligand-based 3D-QSAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors[J]. Bioorganic & Medicinal Chemistry, 2009, 17(6):2400-2409. https://www.sciencedirect.com/science/article/pii/S0968089609001400
    [9]
    FENG L P, GUO Z Y, LIANG J, et al. Research progress and application in the several QSAR modeling method[J]. Journal of Agro-Environment Science, 2007, 26:651-655.
    [10]
    SUN X H, GUAN J Q, TAN J J, et al. 3D-QSAR studies of quinoline ring derivatives as HIV-1 integrase inhibitors[J]. Sar & Qsar in Environmental Research, 2012, 23(7/8):683-703. doi: 10.1080/1062936X.2012.717541?queryID=
    [11]
    LU P, WEI X, ZHANG R. CoMFA and CoMSIA 3D-QSAR studies on quionolone caroxylic acid derivatives inhibitors of HIV-1 integrase[J]. European Journal of Medicinal Chemistry, 2010, 45(8):3413-3419. doi: 10.1016/j.ejmech.2010.04.030
    [12]
    GADHE C G, KOTHANDAN G, MADHAVAN T, et al. Molecular modeling study of HIV-1 gp120 attachment inhibitors[J]. Medicinal Chemistry Research, 2011, 21(8):1892-1904. doi: 10.1007/s00044-011-9711-4.pdf
    [13]
    RAVICHANDRAN V, SANKAR S, AGRAWAL R K. Predicting anti-HIV activity of 1, 1, 3-trioxo[1, 2, 4] -thiadiazine (TTD) derivatives:3D QSAR approach[J]. Medicinal Chemistry Research, 2009, 18(7):511-522. doi: 10.1007/s00044-008-9145-9
    [14]
    TEIXEIRA C, SERRADJI N, MAUREL F, et al. Docking and 3D-QSAR studies of BMS-806 analogs as HIV-1 gp120 entry inhibitors[J]. European Journal of Medicinal Chemistry, 2009, 44(9):3524-3532. doi: 10.1016/j.ejmech.2009.03.028
    [15]
    VYAS V K, PARIKH H, GHATE M. 3D QSAR studies on 5-(2-methylbenzimidazol-1-yl)-N -alkylthiophene-2-carboxamide derivatives as P. falciparum, dihydroorotate dehydrogenase (Pf DHODH) inhibitors[J]. Medicinal Chemistry Research, 2013, 22(5):2235-2243. doi: 10.1007/s00044-012-0216-6
    [16]
    AHER Y D, AGRAWAL A, BHARATAM P V, et al. 3D-QSAR studies of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas as CCR5 receptor antagonists[J]. Journal of Molecular Modeling, 2007, 13(4):519-529. doi: 10.1007/s00894-007-0173-z
    [17]
    KIM M H, RYU J S, HAH J M. 3D-QSAR studies of 1, 2-diaryl-1H-benzimidazole derivatives as JNK3 inhibitors with protective effects in neuronal cells[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(6):1639-1642. https://www.sciencedirect.com/science/article/pii/S0960894X13001157
    [18]
    KOTHANDAN G, MADHAVAN T, GADHE C G, et al. A combined 3D QSAR and pharmacophore-based virtual screening for the identification of potent p38 MAP kinase inhibitors:an in silico approach[J]. Medicinal Chemistry Research, 2013, 22(4):1773-1787. doi: 10.1007/s00044-012-0179-7
    [19]
    GHASEMI J B, AGHAEE E, JABBARI A. Docking, CoMFA and CoMSIA studies of a series of N-benzoylated phenoxazines and phenothiazines derivatives as antiproliferative agents[J]. Bulletin of the Korean Chemical Society, 2013, 34(3):899-906. doi: 10.5012/bkcs.2013.34.3.899
    [20]
    CHEN J, YU R, SHEN B Z, et al. Docking-based 3D-QSAR modeling of the inhibitors of IMP metallo-β-lactamase[J]. Medicinal Chemistry Research, 2013, 22(4):1730-1739. doi: 10.1007/s00044-012-0172-1
    [21]
    SUN J Y, HU M. Binding site analysis, 3D-QSAR studies, and molecular design of flavonoids derivatives as potent neuraminidase inhibitors[J]. Medicinal Chemistry Research, 2013, 22(2):606-614. doi: 10.1007/s00044-012-0054-6
    [22]
    YONG D H, BAEK H S, CHO H, et al. 3D-QSAR study of adamantyl N-benzylbenzamides as melanogenesis inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(2):667-673. https://www.sciencedirect.com/science/article/pii/S0960894X13013474
    [23]
    VYAS V K, GUPTA N, GHATE M. CoMFA and CoMSIA analysis of protein kinase B (PKB β) inhibitors using various alignment methods[J]. Medicinal Chemistry Research, 2013, 22(12):6046-6062. doi: 10.1007/s00044-013-0593-5
    [24]
    HE Y W, NIU C W, LI H, et al. Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac[J]. Science China Chemistry, 2013, 56(3):286-295. doi: 10.1007/s11426-013-4841-9
    [25]
    LIANG T G, REN L H, LI Q S. 3D-QSAR studies of tetraoxanes derivatives as antimalarial agents using CoMFA and CoMSIA approaches[J]. Bulletin of the Korean Chemical Society, 2013, 34(6):1823-1828. doi: 10.5012/bkcs.2013.34.6.1823
    [26]
    ZENG G H, FANG D Q, WU W J, et al. Binding conformations, QSAR, and molecular design of Alkene-3-quinolinecarbonitriles as Src inhibitors[J]. International Journal of Quantum Chemistry, 2013, 113(10):1467-1478. doi: 10.1002/qua.v113.10
    [27]
    CHO J E, KIM J T, JUNG S H, et al. Characterization of binding mode for human coagulation factor XI (FXI) inhibitors[J]. Bulletin of the Korean Chemical Society, 2013, 34(4):1212-1220. doi: 10.5012/bkcs.2013.34.4.1212
    [28]
    ROFOUIE M K, SALAHINEJAD M, GHASEMI J B, et al. Comparative molecular field analysis and comparative molecular similarity index analysis studies on 1H NMR chemical shift of NH group of diaryl triazene derivatives[J]. Magnetic Resonance in Chemistry, 2013, 51(5):269-274. doi: 10.1002/mrc.v51.5
    [29]
    UDDIN R, NAZ A, AKHTAR N, et al. Development of robust QSAR model using rapid overlay of crystal structures (ROCS) based alignment:a test case of Tubulin inhibitors[J]. Medicinal Chemistry Research, 2013, 22(7):3229-3241. doi: 10.1007/s00044-012-0327-0
    [30]
    MADHAVAN T, GADHE C G, KOTHANDAN G, et al. Enhancement of P-gylcoprotein modulators of arylmethylaminephenyl derivatives:an integrative modeling approach[J]. Medicinal Chemistry Research, 2012, 22(22):2511-2523. doi: 10.1007%2Fs00044-012-0246-0.pdf
    [31]
    WU X Y, WAN S H, ZHANG J J. Three dimensional quantitative structure-activity relationship of 5H-Pyrido[4, 3-b]indol-4-carboxamide JAK2 inhibitors[J]. International Journal of Molecular Sciences, 2013, 14(6):12037-12053. doi: 10.3390/ijms140612037
    [32]
    JIMÉNEZ VILLALOBOS T P, GAITÁN I R, MONTALVO ACOSTA J J. 2D, 3D-QSAR and molecular docking of 4(1H)-quinolones analogues with antimalarial activities[J]. Journal of Molecular Graphics & Modelling, 2013, 46:105-124. https://www.sciencedirect.com/science/article/pii/S002228601731102X
    [33]
    LI X L, FU J, SHI W, et al. 3D-QSAR and molecular docking studies on benzotriazoles as antiproliferative agents and histone deacetylase inhibitors[J]. Bulletin of the Korean Chemical Society, 2013, 34(8):2387-2393. doi: 10.5012/bkcs.2013.34.8.2387
    [34]
    WANG J H, TANG K, HOU Q Q, et al. 3D-QSAR studies on C24-monoalkylated vitamin D 3, 26, 23-lactones and their C2α-modified derivatives with inhibitory activity to vitamin D receptor[J]. Molecular Informatics, 2010, 29(8/9):621-632. doi: 10.1021/jm060797q
    [35]
    SRIVASTAVA V, GUPTA S P, SIDDIQI M I, et al. 3D-QSAR studies on quinazoline antifolate thymidylate synthase inhibitors by CoMFA and CoMSIA models[J]. European Journal of Medicinal Chemistry, 2010, 45(4):1560-1571. doi: 10.1016/j.ejmech.2009.12.065
    [36]
    ZENG H H, ZHANG H B. Combined 3D-QSAR modeling and molecular docking study on 1, 4-dihydroindeno[1, 2-c]pyrazoles as VEGFR-2 kinase inhibitors.[J]. Journal of Molecular Graphics & Modelling, 2010, 29(1):54-71. https://www.sciencedirect.com/science/article/pii/S1093326310000562
    [37]
    UL H Z, UDDIN R, WAI L K, et al. Docking and 3D-QSAR modeling of cyclin-dependent kinase 5/p25 inhibitors[J]. Journal of Molecular Modeling, 2011, 17(5):1149-1161. doi: 10.1007/s00894-010-0817-2
    [38]
    HUANG X Y, SHAN Z J, ZHAI H L, et al. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship[J]. Journal of Chemical Information & Modeling, 2011, 51(8):1999-2006.
    [39]
    LI P Z, TIAN Y L, ZHAI H L, et al. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking[J]. Journal of Molecular Structure, 2013, 1051(44):56-65. https://www.sciencedirect.com/science/article/pii/S0022286013006595
    [40]
    MANVAR A T, PISSURLENKAR R R, VIRSODIA V R, et al. Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1, 4-dihydropyridines[J]. Molecular Diversity, 2010, 14(2):285-305. doi: 10.1007/s11030-009-9162-8
    [41]
    RAO G W, WANG C, WANG J, et al. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3, 6-disubstituted-dihydro-1, 2, 4, 5-tetrazine derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(23):6474-6480. https://www.sciencedirect.com/science/article/pii/S0960894X13011104
    [42]
    MORDE V A, SHAIKH M S, PISSURLENKAR R R S, et al. Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum, enoyl-acyl carrier protein reductase (Pf ENR) inhibitors[J]. Molecular Diversity, 2009, 13(4):501-517. doi: 10.1007/s11030-009-9141-0
    [43]
    DU J, LEI B L, QIN J, et al. Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking[J]. Journal of Molecular Graphics & Modelling, 2009, 27(5):642-654. https://www.sciencedirect.com/science/article/pii/S1093326308001459
    [44]
    NAYANA R S, BOMMISETTY S K, SINGH K, et al. Structural analysis of carboline derivatives as inhibitors of MAPKAP K2 using 3D QSAR and docking studies[J]. Journal of Chemical Information & Modeling, 2009, 49(1):53-67. http://www.oalib.com/paper/157157
    [45]
    MUDDASSAR M, PASHA F A, NEAZ M M, et al. Elucidation of binding mode and three dimensional quantitative structure-activity relationship studies of a novel series of protein kinase B/Akt inhibitors[J]. Journal of Molecular Modeling, 2009, 15(2):183-192. doi: 10.1007/s00894-008-0416-7
    [46]
    PRASANNA S, DAGA P R, XIE A, et al. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides:insights from 3D-QSAR and docking[J]. Journal of Computer-Aided Molecular Design, 2009, 23(2):113-127. doi: 10.1007/s10822-008-9244-1
    [47]
    NEAZ M M, PASHA F A, MUDDASSAR M, et al. Pharmacophore based 3D-QSAR study of VEGFR-2 inhibitors[J]. Medicinal Chemistry Research, 2009, 18(2):127-142. doi: 10.1007/s00044-008-9113-4
    [48]
    LU P, WEI X, ZHANG R S. CoMFA and CoMSIA studies on HIV-1 attachment inhibitors[J]. European Journal of Medicinal Chemistry, 2010, 45(5):1792-1798. doi: 10.1016/j.ejmech.2010.01.011
    [49]
    CHAUDHAERY S S, ROY K K, SAXENA A K. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS):3D-QSAR studies on carbamates as acetylcholinesterase inhibitors[J]. Journal of Chemical Information & Modeling, 2009, 49(6):1590-1601. doi: 10.1007/s00044-012-0465-4
    [50]
    FREITAS G B L D, SILVA L L D, ROMEIRO N C, et al. Development of CoMFA and CoMSIA models of affinity and selectivity for indole ligands of cannabinoid CB1 and CB2 receptors[J]. European Journal of Medicinal Chemistry, 2009, 44(6):2482-2496. doi: 10.1016/j.ejmech.2009.01.026
    [51]
    BASU A, JASU K, JAYAPRAKASH V, et al. Development of CoMFA and CoMSIA models of cytotoxicity data of anti-HIV-1-phenylamino-1H-imidazole derivatives[J]. European Journal of Medicinal Chemistry, 2009, 44(6):2400-2407. doi: 10.1016/j.ejmech.2008.09.043
    [52]
    WEBER A, BÖHM M, SUPURAN C T, et al. 3D QSAR selectivity analyses of carbonic anhydrase inhibitors:insights for the design of isozyme selective inhibitors[J]. Journal of Chemical Information & Modeling, 2006, 46(6):2737-2760. http://www.academia.edu/13734752/Homology_Modeling_and_Receptor-Based_3D-QSAR_Study_of_Carbonic_Anhydrase_IX
    [53]
    ZHENG M Y, YU K Q, LIU H, et al. QSAR analyses on avian influenza virus neuraminidase inhibitors using CoMFA, CoMSIA, and HQSAR[J]. Journal of Computer-Aided Molecular Design, 2006, 20(9):549-566. doi: 10.1007/s10822-006-9080-0
    [54]
    LI W, TANG Y, XIE Q, et al. 3D-QSAR studies of orvinol analogs as κ-opioid agonists[J]. Journal of Molecular Modeling, 2006, 12(6):877-884. doi: 10.1007/s00894-005-0084-9
    [55]
    PATEL M R, DIMMOCK J R, TALELE T T. CoMFA and CoMSIA studies on 1, 3-Bis(benzylidene)-3, 4-dihydro-1H-naphthalen-2-one, 2, 6-Bis(benzylidene)cyclohexanone, and 3, 5-Bis(benzylidene)-4-piperidone series of cytotoxic compounds[J]. Journal of Chemical Information & Modeling, 2007, 47(6):2110-2123.
    [56]
    HE Y Z, LI Y X, ZHU X L, et al. Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations[J]. Journal of Chemical Information & Modeling, 2007, 47(6):2335-2344. doi: 10.1021/ci7002297
    [57]
    PISSURLENKAR R R S, SHAIKH M S, COUTINHO E C. 3D-QSAR studies of Dipeptidyl peptidase IV inhibitors using a docking based alignment[J]. Journal of Molecular Modeling, 2007, 13(10):1047-1071. doi: 10.1007/s00894-007-0227-2
    [58]
    LEE J Y, DODDAREDDY M R, CHO Y S, et al. Comparative QSAR studies on peptide deformylase inhibitors[J]. Journal of Molecular Modeling, 2007, 13(5):543-558. doi: 10.1007/s00894-007-0175-x
    [59]
    JUAN A A S, CHO S J. 3D-QSAR study of microsomal prostaglandin E 2, synthase(mPGES-1) inhibitors[J]. Journal of Molecular Modeling, 2007, 13(5):601-610. doi: 10.1007/s00894-007-0172-0
    [60]
    ZAHEERULHAQ, UDDIN R, YUAN H, et al. Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm[J]. Journal of Chemical Information & Modeling, 2008, 48(5):1092-1103. doi: 10.1021/ci8000056
    [61]
    LUO X Y, SHU M, WANG Y Q, et al. 3D-QSAR studies of dihydropyrazole and dihydropyrrole derivatives as inhibitors of human mitotic kinesin Eg5 based on molecular docking[J]. Molecules, 2012, 17(2):2015-2029. https://www.sciencedirect.com/science/article/pii/S1476927115302644
    [62]
    ZHANG Y M, LIU H C, JIAO Y, et al. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors:3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction.[J]. Molecular Diversity, 2012, 16(4):787-802. doi: 10.1007/s11030-012-9405-y
    [63]
    JING P, ZHAO S J, JIAN W J, et al. Quantitative studies on structure-DPPH· scavenging activity relationships of food phenolic acids[J]. Molecules, 2012, 17(11):12910-12924. http://www.oalib.com/paper/164674
    [64]
    GAO J, CHENG Y H, CUI W, et al. 3D-QSAR and molecular docking studies of hydroxamic acids as peptide deformylase inhibitors[J]. Medicinal Chemistry Research, 2011, 21(8):1597-1610. doi: 10.1007/s00044-011-9672-7.pdf
    [65]
    UL-HAQ Z, KHAN W, ZIA S R, et al. Structure-based 3D-QSAR models and dynamics analysis of novel N-benzyl pyridinone as p38α MAP kinase inhibitors for anticytokine activity[J]. Journal of Molecular Graphics & Modelling, 2012, 36:48-61. https://www.sciencedirect.com/science/article/pii/S1093326312000204
    [66]
    BHATT H G, PATEL P K. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(11):3758-3765. https://www.sciencedirect.com/science/article/pii/S0960894X12004519
    [67]
    WU B J, WANG X Q, ZHANG S X. Accurate prediction of glucuronidation of structurally diverse phenolics by human UGT1A9 using combined experimental and in silico approaches[J]. Pharmaceutical Research, 2012, 29(6):1544-1561. doi: 10.1007/s11095-012-0666-z
    [68]
    MADHAVAN T, KOTHANDAN G, GADHE C G, et al. QSAR analysis on PfPK7 inhibitors using HQSAR, CoMFA, and CoMSIA[J]. Medicinal Chemistry Research, 2011, 21(6):681-693. doi: 10.1007/s00044-011-9572-x.pdf
    [69]
    XIA J, LI J, SUN H. Insights into ET(A) subtype selectivity of benzodiazepine endothelin receptor antagonists by 3D-QSAR approaches[J]. Journal of Molecular Modeling, 2012, 18(4):1299-1311. doi: 10.1007/s00894-011-1153-x
    [70]
    LI Y, HAO M, REN H, et al. Exploring the structure requirement for PKCθ inhibitory activity of pyridinecarbonitrile derivatives:an in silico analysis[J]. Journal of Molecular Graphics & Modelling, 2012, 34(34):76-88. https://www.sciencedirect.com/science/article/pii/S1093326311001859
    [71]
    WU X Y, WU S G, CHEN W H. Molecular docking and 3D-QSAR study on 4-(1 H -indazol-4-yl) phenylamino and aminopyrazolopyridine urea derivatives as kinase insert domain receptor (KDR) inhibitors[J]. Journal of Molecular Modeling, 2012, 18(3):1207-1218. doi: 10.1007/s00894-011-1146-9
    [72]
    CHEN N, LIU C K, ZHAO L Z, et al. 3D-QSAR study of multi-target-directed AchE inhibitors based on autodocking[J]. Medicinal Chemistry Research, 2012, 21(2):245-256. doi: 10.1007/s00044-010-9516-x
    [73]
    VERMA S M, RAZDAN B K, SASMAL D. 3D-QSAR study of 8-azabicyclo[3.2.1] octane analogs antagonists of cholinergic receptor[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(11):3108-3112. https://www.sciencedirect.com/science/article/pii/S0960894X09004843
    [74]
    LIU H Y, LIU S S, QIN L T, et al. CoMFA and CoMSIA analysis of 2, 4-thiazolidinediones derivatives as aldose reductase inhibitors[J]. Journal of Molecular Modeling, 2009, 15(7):837-845. doi: 10.1007/s00894-008-0439-0
    [75]
    QIN J, LIU H X, LI J Z, et al. 3D-QSAR studies on the inhibitors of AP-1 and NF-κB mediated transcriptional activation[J]. European Journal of Medicinal Chemistry, 2009, 44(7):2888-2895. doi: 10.1016/j.ejmech.2008.12.006
    [76]
    CHEN Y D, LI H F, TANG W Q, et al. 3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment[J]. European Journal of Medicinal Chemistry, 2009, 44(7):2868-2876. doi: 10.1016/j.ejmech.2008.12.008
    [77]
    PASHA F A, MUDDASSAR M, NEAZ M M, et al. Pharmacophore and docking-based combined in-silico study of KDR inhibitors[J]. Journal of Molecular Graphics & Modelling, 2009, 28(1):54-61. https://www.sciencedirect.com/science/article/pii/S1093326309000448
    [78]
    PASHAA F A, CHOA S J, BEG Y. 3D and quantum QSAR of non-benzodiazepine compounds[J]. European Journal of Medicinal Chemistry, 2008, 43(11):2361-2372. doi: 10.1016/j.ejmech.2008.01.030
    [79]
    DU J, QIN J, LIU H X, et al. 3D-QSAR and molecular docking studies of selective agonists for the thyroid hormone receptor β[J]. Journal of Molecular Graphics & Modelling, 2008, 27(2):95-104. https://www.sciencedirect.com/science/article/pii/S1093326308000405
    [80]
    ROY K K, DIXIT A, SAXENA A K. An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis[J]. Journal of Molecular Graphics & Modelling, 2008, 27(2):197-208. doi: 10.1007/s00894-015-2797-8
    [81]
    LEI B L, DU J, LI S Y, et al. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of thiazolone derivatives as hepatitis C virus NS5B polymerase allosteric inhibitors[J]. Journal of Computer-Aided Molecular Design, 2008, 22(10):711-725. doi: 10.1007/s10822-008-9230-7
    [82]
    NAYANA M R S, SEKHAR Y N, NANDYALA H, et al. Insight into the structural requirements of proton pump inhibitors based on CoMFA and CoMSIA studies[J]. Journal of Molecular Graphics & Modelling, 2008, 27(3):233-243. https://www.sciencedirect.com/science/article/pii/S1093326308000569
    [83]
    SEKHAR Y N, NAYANA M R S, SIVAKUMARI N, et al. 3D-QSAR and molecular docking studies of 1, 3, 5-triazene-2, 4-diamine derivatives against r-RNA:novel bacterial translation inhibitors[J]. Journal of Molecular Graphics & Modelling, 2008, 26(8):1338-1352. https://www.sciencedirect.com/science/article/pii/S1093326308000156
    [84]
    ZHI J S, HONG L Z, XIAO Y H, et al. Molecular design of new aggrecanases-2 inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(19):5339-5350. https://www.sciencedirect.com/science/article/pii/S0960894X13009050
    [85]
    LI P Z, TIAN Y L, ZHAI H L, et al. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking[J]. Journal of Molecular Structure, 2013, 1051(44):56-65. https://www.sciencedirect.com/science/article/pii/S0022286013006595
    [86]
    QIAN C W, ZHENG J X, XIAO G K, et al. 3D-QSAR studies on thiazolidin-4-one S1P1 receptor agonists by CoMFA and CoMSIA[J]. International Journal of Molecular Sciences, 2011, 12(10):6502-6516. https://core.ac.uk/display/8639720
  • Related Articles

    [1]CHEN Bing, CHEN Yangzhou, ZHAN Jingyuan. Consensus of Multi-agent Systems With Packet Losses in Directed Communication Topology[J]. Journal of Beijing University of Technology, 2022, 48(1): 24-31. DOI: 10.11936/bjutxb2020120010
    [2]ZENG Jie, CHENG Weihu, CHEN Haiqing. Model Averaging for Varying Coefficient Partially Linear Models With Missing Data[J]. Journal of Beijing University of Technology, 2019, 45(4): 405-412. DOI: 10.11936/bjutxb2017120029
    [3]WU Lifang, GAO Yuan, GUO Xiaohua, ZHAO Lidong, ZHANG Ziming. Quality Control Approach of 3D Printing Products Combining 3D Model and Computer Vision[J]. Journal of Beijing University of Technology, 2017, 43(4): 526-532. DOI: 10.11936/bjutxb2016070040
    [4]SHAO Shuguang, GE Yuli, WANG Shu, XU Wenqing. Global Regularity for a Model of Inhomogeneous Three-dimensional Navier-Stokes Equations[J]. Journal of Beijing University of Technology, 2017, 43(2): 320-326. DOI: 10.11936/bjutxb2016040094
    [5]ZHANG Yaxiao, CHEN Yangzhou, QU Xiaojun. Consensus of Linear Multi-agent System With Time-delay Under Multi-type Switching Topologies[J]. Journal of Beijing University of Technology, 2016, 42(2): 184-189. DOI: 10.11936/bjutxb2015080033
    [6]SHEN Ying, SHEN Chang-xiang. BLP Integrity Expansion Model on Lattice[J]. Journal of Beijing University of Technology, 2013, 39(3): 402-406. DOI: 10.3969/j.issn.0254-0037.2013.03.013
    [7]YE Qian, LOU Xu-yang, CUI Bao-tong. Hybrid Modeling and Quantized Consensus of Multiagent Networks[J]. Journal of Beijing University of Technology, 2012, 38(12): 1792-1797. DOI: 10.3969/j.issn.0254-0037.2012.12.006
    [8]HU Jiang-bi, FEI Xue-liang, LIU Xiao-ming, SUN Dong-yin. Safety Appraised Model of the Road Surface Use[J]. Journal of Beijing University of Technology, 2008, 34(7): 743-749. DOI: 10.3969/j.issn.0254-0037.2008.07.013
    [9]WANG Cheng-zhang, SHI Qin, SUN Yan-feng, YIN Bao-cai. Improvement on 3D Face Texture and Application in Process of Model Matching[J]. Journal of Beijing University of Technology, 2006, 32(3): 246-251. DOI: 10.3969/j.issn.0254-0037.2006.03.011
    [10]XUE Liu-gen, TIAN Ping. Random Weighted Approximation in Semiparametric Regression Model Under Fixed Design[J]. Journal of Beijing University of Technology, 2004, 30(2): 247-251. DOI: 10.3969/j.issn.0254-0037.2004.02.026
  • Cited by

    Periodical cited type(1)

    1. 刘方乐,林朝展,祝晨蔯. 南药溪黄草中二萜类成分的保肝活性及构效关系研究. 中药新药与临床药理. 2019(12): 1409-1415 .

    Other cited types(1)

Catalog

    Article views (185) PDF downloads (41) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return