Citation: | XU Yangjian, LI Xiangrui, YANG Qiuzu, LIU Shuo. Accurate Solution of Steady State Temperature Field of 2D-FGM Plate Under Convective Heat Transfer Boundary[J]. Journal of Beijing University of Technology, 2018, 44(10): 1284-1290. DOI: 10.11936/bjutxb2017040003 |
To study the accurate solution to the heat conduction problem, the thermal conductivity and convective heat transfer coefficients of the material were assumed to follow the same exponential functions, based on the 2D differential equation of heat conduction in solids. The accurate solution to the steady temperature field of 2D-FGM plate was obtained with variable separation method under convective heat transfer. The outcome was verified by the FEM. The analysis shows that the temperature field of 2D-FGM plate can be optimized by changing parameters of thermal conductivity, fluid medium temperature, heat transfer coefficient and geometry dimensions of structure. The accurate solution can be used as a reference standard for the approximate solution of the temperature field of the FGM plate.
[1] |
ANH V, DUC N D. Nonlinear response of a shear deformable S-FGM shallow spherical shell with ceramic-metal-ceramic layers resting on an elastic foundation in a thermal environment[J]. Mechanics of Advanced Materials and Structures, 2016, 23(8):926-934. doi: 10.1080/15376494.2015.1059527
|
[2] |
EROGLU U. Large deflection analysis of planar curved beams made of functionally graded materials using variational iterational method[J]. Composite Structures, 2016, 136(1):204-216. http://www.sciencedirect.com/science/article/pii/S0263822315009496
|
[3] |
FU Z J, CHEN W, QIN Q H. Boundary knot method for heat conduction in nonlinear functionally graded material[J]. Engineering Analysis with Boundary Elements, 2011, 35(5):729-734. doi: 10.1016/j.enganabound.2010.11.013
|
[4] |
曹蕾蕾, 裴建中, 张学敏, 等.功能梯度材料热传导问题的仿真[J].计算机仿真, 2012, 29(8):387-390. doi: 10.3969/j.issn.1006-9348.2012.08.093
CAO L L, PEI J Z, ZHANG X M, et al. Simulation method of steady-state heat conduction in functionally graded material[J]. Computer Simulation, 2012, 29(8):387-390. (in Chinese) doi: 10.3969/j.issn.1006-9348.2012.08.093
|
[5] |
GOLBAHAR H M R, HAGHIGHI M R, MALEKZADEH P, et al. Inverse transient heat conduction problems of a multilayered functionally graded cylinder[J]. Numerical Heat Transfer Applications, 2012, 61(9):717-733. doi: 10.1080/10407782.2012.671017
|
[6] |
刘俊俏, 苗福生, 李星.二维各向异性功能梯度材料热传导的边界元分析[J].西安交通大学学报, 2013, 47(5):77-81. http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201305014
LIU J Q, MIAO F S, LI X. Boundary element analysis of the two-dimentional heat conduction equation for anisotropic functional graded materials[J]. Journal of Xi'an Jiaotong University, 2013, 47(5):77-81. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201305014
|
[7] |
张驰, 校金友.用边界元分析功能梯度材料的稳态热传导[J].科学技术与工程, 2013, 13(13):3563-3565. doi: 10.3969/j.issn.1671-1815.2013.13.008
ZHANG C, XIAO J Y. Boundary element method for FGM in steady-state heat conduction[J]. Science Technology and Engineering, 2013, 13(13):3563-3565. (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.13.008
|
[8] |
ARNAB B, ISLAM S M R, KHALAK A A, et al. Finite difference solution to thermoelastic field in a thin circular FGM disk with a concentric hole[J]. Procedia Engineering, 2014, 90(1):193-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214706101
|
[9] |
ZHANG Z Y, GANG F, WU H, et al. Prediction and control of the Bi-stable functionally graded composites by temperature gradient field[J]. Medziagotyra, 2015, 21(4):543-548.
|
[10] |
TAN W, SUN C Q, XUE C F, et al. Method of lines to solve 2-D steady temperature field of FGM[J]. Key Engineering Materials, 2007, 353-358(3):2003-2006. http://www.scientific.net/KEM.353-358.2003
|
[11] |
陈康, 许希武, 马凯.热流密度/对流换热边界下双向梯度板的瞬态温度场分析[J].应用力学学报, 2013, 30(4):563-568. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YYLX201304018&dbname=CJFD&dbcode=CJFQ
CHEN K, XU X W, MA K. Transient temperature field analysis of two-directional graded plate under heat flux and convection boundaries[J]. Chinese Journal of Applied Mechanics, 2013, 30(4):563-568. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YYLX201304018&dbname=CJFD&dbcode=CJFQ
|
[12] |
MOOSAIE A. Axisymmetric steady temperature field in FGM cylindrical shells with temperature-dependent heat conductivity and arbitrary linear boundary conditions[J]. Archives of Mechanics, 2015, 67(3):233-251.
|
[13] |
刘五祥.轴对称功能梯度圆板稳态热传导的精确解[J].同济大学学报(自然科学版), 2010, 38(5):716-719. doi: 10.3969/j.issn.0253-374x.2010.05.015
LIU W X. Exact solution of steady-state heat conduction of axisymmetric functionally graded circular plates[J]. Journal of Tongji University (Natural Science), 2010, 38(5):716-719. (in Chinese) doi: 10.3969/j.issn.0253-374x.2010.05.015
|
[14] |
许杨健, 王飞, 杜海洋.初始和边界不同恒温时二维梯度板瞬态温度场[J].固体力学学报, 2014, 35(2):209-216. http://qikan.cqvip.com/article/detail.aspx?id=49390031
XU Y J, WANG F, DU H Y. Unsteady temperature fields in the 2D-FGM plate under different constant temperatures of initial and boundary[J]. Chinese Journal of Solid Mechanics, 2014, 35(2):209-216. (in Chinese) http://qikan.cqvip.com/article/detail.aspx?id=49390031
|
[15] |
MALEKZADEH P, GOLBAHAR H M R, HEYDARPOUR Y. Heat transfer analysis of functionally graded hollow cylinders subjected to an axisymmetric moving boundary heat flux[J]. Numerical Heat Transfer, Part A:Applications, 2012, 61(8):614-632. doi: 10.1080/10407782.2012.670587
|
[16] |
张宏建, 黄志刚, 李梦林.三侧恒温下组分对2D-FGM板瞬态温度场的影响研究[J].机电产品开发与创新, 2015, 28(6):5-7. doi: 10.3969/j.issn.1002-6673.2015.06.002
ZHANG H J, HUANG Z G, LI M L. Research components on 2D-FGM transient temperature field of the three sides of the thermostat[J]. Development & Innovation of Machinery & Electrical Products, 2015, 28(6):5-7. (in Chinese) doi: 10.3969/j.issn.1002-6673.2015.06.002
|
[17] |
张雁, 刘霓生, 陈林泉, 等.第二边界条件下梯度功能材料一维温度场的数值模拟[J].固体火箭技术, 2004, 27(2):145-148. doi: 10.3969/j.issn.1006-2793.2004.02.018
ZHANG Y, LIU N S, CHEN L Q, et al. Numerical simulation of one-dimensional thermal field with time-variable heat flux of functionally gradient materials[J]. Journal of Solid Rocket Technology, 2004, 27(2):145-148. (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.02.018
|
[18] |
杜海洋.基于分离变量法的功能梯度结构热传导研究[D].邯郸: 河北工程大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10076-1013126239.htm
DU H Y. Study on thermal conduction of functional gradient structure based on separation variable method[D]. Handan: Hebei University of Engineering, 2012. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10076-1013126239.htm
|
[1] | TANG Zhiwei, MI Changhua, AN Aiming, ZHANG Xuefeng. Calculation of Temperature Field for Hot Dry Rock Production Wells[J]. Journal of Beijing University of Technology, 2017, 43(4): 644-648. DOI: 10.11936/bjutxb2016070079 |
[2] | NAN Qun, GUO Xue-mei, ZHAI Fei, WANG Sai-nan. Effect of the Blood Vessel on the Microwave Ablation Temperature Field of Liver[J]. Journal of Beijing University of Technology, 2014, 40(12): 1917-1922. DOI: 10.3969/j.issn.0254-0037.2014.12.023 |
[3] | WANG Xiao-guang, SUI Yun-kang, LI Xiao-yang. Solution of Variable Separable Programming[J]. Journal of Beijing University of Technology, 2014, 40(9): 1294-1297. DOI: 10.3969/j.issn.0254-0037.2014.09.003 |
[4] | LU Yu-lin, CHEN Xiao-ran, DING Jin-li. Analysis of Concrete Temperature in Early Age With Field Test and Numerical Simulation Methods[J]. Journal of Beijing University of Technology, 2013, 39(12): 1843-1848. DOI: 10.3969/j.issn.0254-0037.2013.12.013 |
[5] | HU Jian-lan, SHAO Jia-ting. Method of a Two-stage-presumption to Solving the Problem of Boussinesq Physical Model[J]. Journal of Beijing University of Technology, 2011, 37(2): 296-301. DOI: 10.3969/j.issn.0254-0037.2011.02.023 |
[6] | QIN Fei, ZHANG Yang, LIU Ya-nan. Analytical Solution of Perturbed Magnetic Fields of Plane Crack[J]. Journal of Beijing University of Technology, 2008, 34(12): 1238-1244. DOI: 10.3969/j.issn.0254-0037.2008.12.002 |
[7] | HU Jian-lan, ZHANG Han-lin, JIN Huan. Exact Travelling Wave Solutions of Several Kinds of Nonlinear Equations[J]. Journal of Beijing University of Technology, 2002, 28(3): 317-319. DOI: 10.3969/j.issn.0254-0037.2002.03.016 |
[8] | HU Jian-lan. Exact Traveling Wave Solutions to Generalized KdV Equations[J]. Journal of Beijing University of Technology, 2002, 28(2): 233-238. DOI: 10.3969/j.issn.0254-0037.2002.02.024 |
[9] | Hu Jianlan, Zhang Hanlin. Several Kinds of Accurate Solutions on Generalized KdV-Burgers Equation[J]. Journal of Beijing University of Technology, 2000, 26(4): 126-129. DOI: 10.3969/j.issn.0254-0037.2000.04.031 |
[10] | Fang Min, Liu Kunhui. An Explicit Solution to a Group of Variational Unequation[J]. Journal of Beijing University of Technology, 1996, 22(3): 67-75. |