• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
LIU Weiqiang, ZHA Shanshun, YUE Ming, ZHANG Dongtao. Research Progress of Sintered Nd-Fe-B Permanent Magnets With High Coercivity[J]. Journal of Beijing University of Technology, 2017, 43(10): 1569-1581. DOI: 10.11936/bjutxb2017010002
Citation: LIU Weiqiang, ZHA Shanshun, YUE Ming, ZHANG Dongtao. Research Progress of Sintered Nd-Fe-B Permanent Magnets With High Coercivity[J]. Journal of Beijing University of Technology, 2017, 43(10): 1569-1581. DOI: 10.11936/bjutxb2017010002

Research Progress of Sintered Nd-Fe-B Permanent Magnets With High Coercivity

More Information
  • Received Date: January 02, 2017
  • Available Online: August 03, 2022
  • Published Date: October 09, 2017
  • Sintered Nd-Fe-B rare earth permanent magnets have excellent magnetic properties. But its Curie temperature is low, which makes it limited in the field of high temperature applications. With the rapid development of new energy vehicles, wind power and other emerging industries, the market demand for high temperature sintered Nd-Fe-B magnets have been greatly raised. Therefore, in order to improve the service temperature of Nd-Fe-B material, new technologies have been developed to increase the coercivity of sintered Nd-Fe-B magnets. At the same time, the investigation on the high coercivity sintered Nd-Fe-B magnets with low Dy content or without Dy content become the highlights in order toreduce the product cost and consumption of heavy rare earth metals. It is found that the coercivity of Nd-Fe-B magnets can be improved to a certain extent by refined grain technology, grain boundary diffusion technology and grain boundary doping technology. In this paper, the latest research progress of these three new technologies are reviewed.

  • [1]
    SAGAWA M, FUJIMURA S, TOGAWA N, et al. New material for permanete magnet on a base of Nd and Fe[J]. Journal of Applied Physics, 1984, 55(6): 2083-2087. doi: 10.1063/1.333572
    [2]
    SUGIMOTO S. Development of technology to reduce dysprosium usage in Nd-Fe-B magnets[J]. Magnetics Japan, 2011, 6(2): 81-88.
    [3]
    GUTFLEISCH O, WILLARD M A, BRUCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821-842. doi: 10.1002/adma.v23.7
    [4]
    HONO K, SEPEHRI-AMIN H. Strategy for high coercivity Nd-Fe-B magnets[J]. Scripta Materialia, 2012, 67(6): 530-535. doi: 10.1016/j.scriptamat.2012.06.038
    [5]
    ONO K, ARAKI T, YANO M, et al. Element-specific magnetic domain imaging of (Nd, Dy)-Fe-B sintered magnets using scanning transmission X-ray microscopy[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2672-2675. doi: 10.1109/TMAG.2011.2151844
    [6]
    UESTUENER K, KATTER M, RODEWALD W. Dependence of the mean grain size and coercivity of sintered Nd-Fe-B magnets on the initial powder particle size[J]. IEEE Transactions on Magnetics, 2006, 42(10): 2897-2899. doi: 10.1109/TMAG.2006.879889
    [7]
    LI W F, OHKUBO T, HONO K, et al. The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(8): 1100-1105. doi: 10.1016/j.jmmm.2008.10.032
    [8]
    王庆凯, 赵军涛, 张玉孟, 等.细晶工艺制备高性能烧结钕铁硼的研究[J].金属功能材料, 2015, 22(5): 49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201505023.htm

    WANG Q K, ZHAO J T, ZHANG Y M, et al. Investigation on preparation of high performance sintered Nd-Fe-B through grain refinement treatment[J]. Metallic Functional Materials, 2015, 22(5): 49-52. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201505023.htm
    [9]
    UNE Y, SAGAWA M. Enhancement of coercivity of Nd-Fe-B sintered magnets by grain size reduction[J]. Journal of the Japan Institute of Metals, 2012, 76(1): 12-16. doi: 10.2320/jinstmet.76.12
    [10]
    CHEN L, CAO X, GUO S, et al. Coercivity enhancement of Dy-free sintered Nd-Fe-B magnets by grain refinement and induction heat treatment[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-3.
    [11]
    ZHANG Y, HAN J, LIU S, et al. Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders[J]. Scripta Materialia, 2015, 110: 57-60. http://or.nsfc.gov.cn/handle/00001903-5/293394
    [12]
    HONO K, OHKUBO T, SEPEHRI-AMIN H. Microstructure-coercivity relationships of Nd-Fe-B base permanent magnets[J]. Journal of the Japan Institute of Metals, 2012, 76(1): 2-11. doi: 10.2320/jinstmet.76.2
    [13]
    SEPEHRI-AMIN H, OHKUO T, SHIMA T, et al. Grain boundary and interface chemistry of an Nd-Fe-B-based sintered magnet[J]. Acta Materialia, 2012, 60(3): 819-830. doi: 10.1016/j.actamat.2011.10.043
    [14]
    LIN Z, HAN J, XING M, et al. Improvement of coercivity and thermal stability of anisotropic Nd13Fe79.4-B7Nb0.3Ga0.3 powders by diffusion of Pr-Cu alloys[J]. Applied Physics Letters, 2012, 100(5): 052409. doi: 10.1063/1.3681803
    [15]
    SEPEHRI-AMIN H, PRABHU D, HAYASHI M, et al. Coercivity enhancement of rapidly solidified Nd-Fe-B magnet powders[J]. Scripta Materialia, 2013, 68(3): 167-170.
    [16]
    NAKAMURA H, HIROTA K, SHIMAO T, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets[J]. IEEE Transactions on Magnetics, 2005, 41(10): 3844-3846. doi: 10.1109/TMAG.2005.854874
    [17]
    WATANABE N, ITAKURA M, KUWANO N, et al. Microstructure analysis of sintered Nd-Fe-B magnets improved by Tb-vapor sorption[J]. Materials Transactions, 2007, 48(5): 915-918. doi: 10.2320/matertrans.48.915
    [18]
    SUZUKI H, SATSU Y, KOMURO M. Magnetic properties of a Nd-Fe-B sintered magnet with Dy segregation[J]. Journal of Applied Physics, 2009, 105(7): 07A734. doi: 10.1063/1.3073830
    [19]
    PARK K T, HIRAGA K, SAGAWA M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets[C]//Proceedings of the Sixteenth International Workshop on Rare-Earth Magnets and Their Application. Sendai: [s.n.], 2000: 257-264.
    [20]
    HIROTA K, NAKAMURA H, MINOWA T, et al. Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets [J]. IEEE Transactions on Magnetics, 2006, 42(10): 2909-2911. doi: 10.1109/TMAG.2006.879906
    [21]
    NAKAMURA H, HIROTA K, OHASHI T, et al. Coercivity distributions in Nd-Fe-B sintered magnets produced by the grain boundary diffusion process[J]. Journal of Physics D: Applied Physics, 2011, 44(6): 540-545.
    [22]
    WATANABE N, UMEMOTO H, ISHIMIRU M, et al. Microstructure analysis of Nd-Fe-B sintered magnets improved by Tb-metal vapour sorption[J]. Journal of Microscopy, 2009, 236(2): 104-108. doi: 10.1111/jmi.2009.236.issue-2
    [23]
    李建, 周磊, 刘涛, 等.高Dy含量烧结Nd-Fe-B的晶界扩散处理研究[J].粉末冶金工业, 2014, 24(5): 33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201405011.htm

    LI J, ZHOU L, LIU T, et al. Investigation of grain boundary diffusion on Nd-Fe-B sintered magnet with high dycontent[J]. Powder Metallurgy Industry, 2014, 24(5): 33-37. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201405011.htm
    [24]
    孙绪新, 包小倩, 高学绪, 等.烧结Nd-Fe-B磁体表面渗镀Dy2O3对磁体显微组织和磁性能的影响[J].中国稀土学报, 2009, 27(1): 86-91.

    SUN X X, BAO X Q, GAO X X, et al. Effect of dysprosium addition by pack cementation on magnetic properties and microstructure of Nd-Fe-B sintered magnets[J]. Journal of the Chinese Rare Earth Societ, 2009, 27(1): 86-91. (in Chinese)
    [25]
    XU F, WANG J, DONG X, et al. Grain boundary microstructure in DyF3-diffusion processed Nd-Fe-B sintered magnets[J]. Journal of Alloys and Compounds, 2011, 509(30): 7909-7914. doi: 10.1016/j.jallcom.2011.05.023
    [26]
    SEPEHRI-AMIN H, OHKUBO T, NISHIUCHI T, et al. Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by the diffusion of Nd-Cu eutectic alloys[J]. Scripta Materialia, 2010, 63(11): 1124-1127. doi: 10.1016/j.scriptamat.2010.08.021
    [27]
    OONO N, SAGAWA M, KASADA R, et al. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(3): 297-300.
    [28]
    OONO N, SAGAWA M, KASADA R, et al. Microstructural evaluation of Dy-Ni-Al grain-boundary-diffusion (GBD) treatment on sintered Nd-Fe-B magnet[J]. Materials Science Forum, 2010, 654/655/656: 2919-2922.
    [29]
    LI D, SUZUKI S, KAWASAKI T, et al. Grain interface modification and magnetic properties of Nd-Fe-B sintered magnets[J]. Japanese Journal of Applied Physics, 2008, 47(10): 7876-7878. doi: 10.1143/JJAP.47.7876
    [30]
    SEPEHRI-AMIN H, OHKUBO T, HONO K. Grain boundary structure and chemistry of Dy-diffusion processed Nd-Fe-B sintered magnets[J]. Journal of Applied Physics, 2010, 107(9): 09A745. doi: 10.1063/1.3351247
    [31]
    LIU W Q, CHANG C, YUE M, et al. Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with DyH3 nanoparticles[J]. Journal of Magnetics, 2013, 18(4): 400-404. doi: 10.4283/JMAG.2013.18.4.400
    [32]
    JI W X, LIU W Q, YUE M, et al. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nanoparticles[J]. Physica B Condensed Matter, 2015, 476: 147-149. doi: 10.1016/j.physb.2015.03.013
    [33]
    SODERŽNIK M, KORENT M, SODERZINK K Ž, et al. High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF3 followed by the grain-boundary diffusion process[J]. Acta Materialia, 2016, 115: 278-284. doi: 10.1016/j.actamat.2016.06.003
    [34]
    LEE S, KWON J, CHA H R, et al. Enhancement of coercivity in sintered Nd-Fe-B magnets by grain-boundary diffusion of electrodeposited Cu-Nd alloys[J]. Metals and Materials International, 2016, 22(2): 340-344. doi: 10.1007/s12540-016-5460-8
    [35]
    SEPEHRI-AMIN H, OHKUBO T, NAGASHIMA S, et al. High-coercivity ultrafine-grained anisotropic Nd-Fe-B magnets processed by hot deformation and the Nd-Cu grain boundary diffusion process[J]. Acta Materialia, 2013, 61(17): 6622-6634. doi: 10.1016/j.actamat.2013.07.049
    [36]
    LIU L, SEPEHRI-AMIN H, OHKUBO T, et al. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process[J]. Journal of Alloys and Compounds, 2016, 666: 432-439. doi: 10.1016/j.jallcom.2015.12.227
    [37]
    SAWATZKI S, DIRKS A, FRINCU B, et al. Coercivity enhancement in hot-pressed Nd-Fe-B permanent magnets with low melting eutectics[J]. Journal of Applied Physics, 2014, 115(17): 17A705. doi: 10.1063/1.4859097
    [38]
    AKIYA T, LIU J, SEPEHRI-AMIN H, et al. High-coercivity hot-deformed Nd-Fe-B permanent magnets processed by Nd-Cu eutectic diffusion under expansion constraint[J]. Scripta Materialia, 2014, 81(24): 48-51.
    [39]
    WAN F, HAN J, ZHANG Y, et al. Coercivity enhancement in HDDR near-stoichiometric ternary Nd-Fe-B powders[J]. Journal of Magnetism and Magnetic Materials, 2014, 360(360): 48-51.
    [40]
    CHEN F, ZHANG T, WANG J, et al. Coercivity enhancement of a Nd-Fe-B sintered magnet by diffusion of Nd70Cu30 alloy under pressure[J]. Scripta Materialia, 2015, 107: 38-41. doi: 10.1016/j.scriptamat.2015.05.015
    [41]
    SEPEHRI-AMIN H, LIU J, OHKUO T, et al. Enhancement of coercivity of hot-deformed Nd-Fe-B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy[J]. Scripta Materialia, 2013, 69(9): 647-650. doi: 10.1016/j.scriptamat.2013.07.011
    [42]
    SUN H, LIU W Q, ZHANG X R, et al. Coercivity enhancement in Nd-Fe-B sintered permanent magnet doped with Pr nanoparticles[J]. Journal of Applied Physics, 2011, 109(7): 07A749. doi: 10.1063/1.3565415
    [43]
    YUE M, LIU W Q, ZHAN D T, et al. Tb nanoparticles doped Nd-Fe-B sintered permanent magnet with enhanced coercivity[J]. Applied Physics Letters, 2009, 94(9): 2083.
    [44]
    LIU W Q, SUN H, YI X F, et al. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping[J]. Journal of Alloys and Compounds, 2010, 501(1): 67-69. doi: 10.1016/j.jallcom.2010.04.030
    [45]
    KIANVASH A, MOTTRAM R S, HARRIS I R. Densification of a Nd13Fe78 NbCoB7-type sintered magnet by (Nd, Dy)-hydride additions using a powder blending technique[J]. Journal of Alloys and Compounds, 1999, 287(1): 206-214.
    [46]
    LI L, YI J, PENG Y, et al. The effect of compound addition Dy2O3 and Sn on the structure and properties of NdFeB magnets[J]. Journal of Magnetism and Magnetic Materials, 2007, 308(1): 80-84. doi: 10.1016/j.jmmm.2006.05.005
    [47]
    XU F, ZHANG L, DONG X, et al. Effect of DyF3 additions on the coercivity and grain boundary structure in sintered Nd-Fe-B magnets[J]. Scripta Materialia, 2011, 64(12): 1137-1140. doi: 10.1016/j.scriptamat.2011.03.011
    [48]
    KIM J Y, KWON H W, LEE J G, et al. Effect of rare-earth dopant on coercivity of hot-pressed Nd-Fe-B magnet doped with RF3[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
    [49]
    LIU Y H, GUO S, LIU X M, et al. Magnetic properties and microstructure of Nd-Fe-B sintered magnets with DyHx addition[J]. Journal of Applied Physics, 2012, 111(7): 07A705. doi: 10.1063/1.3671426
    [50]
    BAE K H, KIM T H, LEE S R, et al. Effects of DyHx and Dy2O3 powder addition on magnetic and microstructural properties of Nd-Fe-B sintered magnets[J]. Journal of Applied Physics, 2012, 112(9): 093912. doi: 10.1063/1.4764320
    [51]
    LIANG L, MA T, ZHANG P, et al. Effects of Dy71.5Fe28.5 intergranular addition on the microstructure and the corrosion resistance of Nd-Fe-B sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2015, 384: 133-137. doi: 10.1016/j.jmmm.2015.02.043
    [52]
    LIU X, WANG X, LIANG L, et al. Rapid coercivity increment of Nd-Fe-B sintered magnets by Dy69Ni31 grain boundary restructuring[J]. Journal of Magnetism and Magnetic Materials, 2014, 370(12): 76-80.
    [53]
    ZHANG X, GUO S, YAN C, et al. Improvement of the thermal stability of sintered Nd-Fe-B magnets by intergranular addition of Dy82.3Co17.7[J]. Journal of Applied Physics, 2014, 115(17): 2083.
    [54]
    GABAY A M, MARINESCU M, LI W F, et al. Dysprosium-saving improvement of coercivity in Nd-Fe-B sintered magnets by Dy2S3 additions[J]. Journal of Applied Physics, 2011, 109(8): 106-110.
    [55]
    LIANG L, MA T, ZHANG P, et al. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification[J]. Journal of Magnetism and Magnetic Materials, 2014, 355(4): 131-135. http://linkinghub.elsevier.com/retrieve/pii/S0304885313007993
    [56]
    ZHANG Y, MA T, LIU X, et al. Coercivity enhancement of Nd-Fe-B sintered magnets with intergranular adding (Pr, Dy, Cu)-Hx powders[J]. Journal of Magnetism and Magnetic Materials, 2016, 399: 159-163. doi: 10.1016/j.jmmm.2015.09.071
    [57]
    NI J, MA T, YAN M. Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(21): 2549-2553. doi: 10.1016/j.jmmm.2011.05.029
    [58]
    WAN F, ZHANG Y, HAN J, et al. Coercivity enhancement in Dy-free Nd-Fe-B sintered magnets by using Pr-Cu alloy[J]. Journal of Applied Physics, 2014, 115(20): 203910-1-203910-4.
    [59]
    LIANG L, MA T, WU C, et al. Coercivity enhancement of Dy-free Nd-Fe-B sintered magnets by intergranular adding Ho63.4Fe36.6 alloy[J]. Journal of Magnetism and Magnetic Materials, 2016, 397: 139-144. doi: 10.1016/j.jmmm.2015.08.091
  • Cited by

    Periodical cited type(21)

    1. 闫一诺,严红燕,井振威,李慧,梁精龙. 高矫顽力烧结钕铁硼永磁材料的进展及展望. 热加工工艺. 2025(01): 24-27+32 .
    2. 刘志恒,王春霞,田礼熙,谌宏,何佳俊,张霖飞. 预浸对烧结钕铁硼HEDP电镀铜的影响. 电镀与涂饰. 2024(01): 24-34 .
    3. 司家和,臧亚南,李俊荣,徐云慧,杨梦,董意冉,罗政刚,王再学,王仕峰,涂辉,邓敏,张建明,李培培,丛后罗,宋帅帅,柳峰. 环保丁基再生橡胶/聚氯乙烯热塑性弹性体阻尼材料的制备与性能研究. 橡胶科技. 2024(08): 432-438 .
    4. 李欢,王俊勃,刘江南,思芳,吴树杰,董义. 退火温度对NdFeB磁体微观结构与磁性能的影响. 金属热处理. 2024(12): 57-61 .
    5. 梁超,张敏刚,陈峰华,赵苗苗,董永安. 基于改进的d-HDDR各向异性NdFeB合金矫顽力机理研究. 磁性材料及器件. 2023(02): 11-16 .
    6. 牛艳召,王聪,杨富尧,刘洋,韩钰,高洁,孙浩,刘成宇. 纳米双相复合磁性材料的研究进展及发展方向. 兵器材料科学与工程. 2023(06): 127-144 .
    7. 江星新,卢耀军,李欣彤,任泽华,杨牧南,杨斌. 脉冲电镀Ni镀层参数影响及耐腐蚀机理. 有色金属科学与工程. 2022(01): 52-59 .
    8. 唐杰,邓盛贤,杨梨容,王晓军,刘畅,李小伍. 合金与化合物扩散改性烧结Nd-Fe-B磁体的研究进展. 化学研究与应用. 2022(06): 1242-1250 .
    9. 吴玉程,高志强,徐光青,刘家琴,轩海成,刘友好,衣晓飞,陈静武,韩培德. 烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战. 金属学报. 2021(02): 171-181 .
    10. 陈东雯,黄伟超,谢觉,陈虞鑫,唐锦. 驱动电机用烧结钕铁硼磁体的矫顽力提高方法. 广东化工. 2021(19): 86-87 .
    11. 周头军,潘为茂,刘仁辉,屈鹏鹏,黎绵付,钟震晨. 烧结NdFeB磁体晶界扩散Tb_(70)Cu_(30)合金的热稳定性及微观结构研究. 中国稀土学报. 2021(06): 903-908 .
    12. 王越,马锋,李艳,陈环,杨丽斐,冒守栋,沈保根,吕毅. 磁外科学发展趋势及展望. 科学通报. 2020(13): 1203-1212 .
    13. 王越,李艳,汤博,刘亚雄,史爱华,寇博,吕毅. 磁外科器械结构规划原则及相关思考. 科学通报. 2020(13): 1213-1223 .
    14. 潘为茂,刘仁辉,周头军,屈鹏鹏,陶力,陈久昌,邱建民,钟震晨. 烧结Nd-Fe-B磁体晶界扩散TbH2高温稳定性及其机理. 有色金属科学与工程. 2020(03): 109-114 .
    15. 谭海翔,李容军,汤盛龙,刘韶炼,廖春晓. 烧结高性能稀土钕铁硼磁体制备工艺研究. 大众科技. 2020(04): 42-44+55 .
    16. 刘义伦,曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术. 2020(04): 262-268 .
    17. 任少卿,赵明静,刘国征,李泉,高岩,李玲,付建龙,吕科,王东波. CuGa晶界添加对烧结钕铁硼永磁体磁性能及热稳定性的影响. 稀土. 2020(05): 40-49 .
    18. 黄晶明,张晓虎,田亚斌,叶昌美,石忠宁,杨少华. Nd(Ⅲ)在NaF-KF熔盐钨电极上电化学行为. 有色金属科学与工程. 2020(05): 127-133 .
    19. 臧亚南,孙鹏,仲启坤,徐云慧,徐冬梅. PVC/丁基再生胶磁性阻尼材料的制备与性能. 工程塑料应用. 2019(05): 54-58 .
    20. 甘家毅,韦世强,曾阳庆,汤盛龙,黄伟超. 钕铁硼磁性粉末压制工艺的研究进展. 大众科技. 2018(07): 46-48+102 .
    21. 朱建腾,徐丽琴,赵增茹,刘艳丽,马强,李永峰,张雪峰. 烧结温度对MM-Fe-B永磁体磁性能与微观结构的影响. 稀土. 2018(06): 57-62 .

    Other cited types(26)

Catalog

    Article views (430) PDF downloads (103) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return