Citation: | SUN Guangmin, YAN Zhengxiang, ZHANG Junjie, MA Beichuan, LI Jun, JIANG Ming, LIU Tianlun, ZHANG Yi. Motion Classification Based on Bispectrum Analysis of Surface EMG Signal[J]. Journal of Beijing University of Technology, 2017, 43(7): 1045-1050. DOI: 10.11936/bjutxb2016120011 |
In order to improve the accuracy of upper limb movement recognition, an action classification method based on bispectrum analysis of surface EMG signals was presented in this paper. Information gain was used as the measure criterion of the surface EMG start and end signal segmentation. The segmented signal was extracted by the TKE operator, then the extracted signals were bispectrum-transformed, and bispectrum slices were extracted as the surface EMG features. The probabilistic neural network was used as the classifier, with 100 times 10-fold cross validation as an action classification experiment, and the average correct rate of 10 times was calculated. The correct rates of classification for diagonal slices, secondary diagonal slices and bi-diagonal slices were 94.56%, 90.83% and 95.48% respectively.
[1] |
AMARE A T, SHRIME M, NEWTON C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013:a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963):117-171. doi: 10.1016/S0140-6736(14)61682-2
|
[2] |
卢蕾. 基于表面肌电信号区分上肢运动的实验研究[D]. 北京: 北京协和医院, 2011
LU L. Experimental study on upper limb seng detection and preliminary application on movement distinction[D]. Beijing:Peking Union Medical College Hospital, 2011. (in Chinese)
|
[3] |
孙欣. 基于表面肌电信号定量辨识的上肢康复机器人运动控制[D]. 哈尔滨: 哈尔滨工业大学, 2010
SUN X. Motion control of upper limb rehabilitation robot based on seng's quantitative defination[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
|
[4] |
王振宇. 基于sENG信号的上肢康复机器人系统研究[D]. 北京: 北京理工大学, 2015
WANG Z Y. Study on a surface EMG based upper-limb rehabilitation robotic system[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
|
[5] |
李芳, 安丙辰, 郑洁皎.表面肌电图在脑卒中患者手神经肌肉功能评定中的应用[J].中国康复理论与实践, 2015, 21(3):280-283 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS201503009.htm
LI F, AN B C, ZHENG J J. Evaluating hand neural-muscle function after stroke with surface electromyography (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2015, 21(3):280-283. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS201503009.htm
|
[6] |
张贤达.时间序列分析[M].北京:清华大学出版社, 1996:10-30.
|
[7] |
万泽明. 脑卒中患者上肢表面肌电信号分解与疲劳研究[D]. 长春: 中国科学院长春光学精密器械与物理研究所, 2013
WAN Z M. Surface electromyography decomposition and muscle fatigue research of upper extremity in stroke patients[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
|
[8] |
LI X Y, ZHOU P, ARUIN A S. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection[J]. Annals of Biomedical Engineering, 2007, 35(9):1532-1538. doi: 10.1007/s10439-007-9320-z
|
[9] |
陈彦钊. 基于sENG信号的上肢自主康复训练动作模式识别[D]. 济南: 山东大学, 2015
CHEN Y Z. Motion pattern recognition of sEMG signal based upper limb self-rehabilitation training[D]. Jinan:Shandong University, 2015. (in Chinese)
|
[10] |
陈歆普. 基于肌电信号的多模式人机接口研究[D]. 上海: 上海交通大学, 2011
CHEN X P. A study of multifunctional human machine interface with use of electromyographic signal[D]. Shanghai:Shanghai Jiaotong University, 2011. (in Chinese)
|
[11] |
段向阳, 王永生, 苏永生.切片双谱分析在离心泵故障诊断中的应用[J].振动、测试与诊断, 2010, 30(5):581-584 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201005025.htm
DUAN X Y, WANG Y S, SU Y S. Application of slice bispectrum analysis to fault diagnosis of centrifugal pump[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(5):581-584. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201005025.htm
|
[12] |
陈明. MATLAB神经网络原理与实例精解[M].北京:清华大学出版社, 2013:196-230.
|