Citation: | LI Zhuoxin, CAO Xiaotao, Wolfgang TILLMANN. Progress of Nano-materials in Non-copper Coated Solid Wires[J]. Journal of Beijing University of Technology, 2017, 43(10): 1582-1589. DOI: 10.11936/bjutxb2016110013 |
Non-copper coated solid wires are the future development trends for gas shielded solid wires. The research progress and application of nano-materials in non-copper coated solid wire were reviewed. It was concluded that the surface nano-coating of non-copper surface with corrosion resistance by increasing self-corrosion potential. The arc stability is improved by refining molten droplets and accelerating transition frequency. The nano-additives surface with coefficient and wear scar diameter of tribo-pair through several lubrication mechanisms on the rubbing interfaces such as physical adsorption or chemical reaction film, "micro ball" and "micropolishing", thus providing some theoretical guidance to decrease contact tip wear for non-copper coated solid wires.
[1] |
智研咨询集团. 2015—2022年中国焊接材料产业供需态势及投资战略研究报告[EB/OL]. [2015-07-12]. http://www.chyxx.com/research/201507/331479.html.
|
[2] |
国际机器人协会(IFR). 2014年全球工业机器人年销量22. 5万台同比增长27% [EB/OL]. [2015-03-26]. http://www.askci.com/news/chanye/2015/03/26/152948426y.shtml.
|
[3] |
熊腊森.焊接工程基础[M].北京:机械工业出版社, 2002: 90-95.
|
[4] |
王暾. 无镀铜焊丝防锈性能及其快速评价技术研究[D]. 天津: 天津大学, 2010.
WANG D. Research on antirust property of non-copper coated wire and its rapid evaluation [D]. Tianjin: Tianjin University, 2010. (in Chinese)
|
[5] |
陈邦固, 谢晋平, 金立鸿.环保型非镀铜实芯焊丝的特点及应用前景[J].金属加工, 2003(5): 26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-JXRG200305010.htm
CHEN B G, XIE J P, JIN L H. Characteristics and application prospect of environmentally friendly non copper coated solid wire [J]. Machinist Metal Forming, 2003(5): 26-28. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXRG200305010.htm
|
[6] |
唐伯钢.我国焊接材料的发展趋势和应关注的问题[J].焊接技术, 2002, 32(6): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200206000.htm
TANG B G. Development trend of welding materials and the problems that should be noticed [J]. Welding Technology, 2002, 32(6): 1-4. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200206000.htm
|
[7] |
TESSIN F, SCHWARZ B. 无镀铜焊丝引领未来的焊接技术[C]//钢结构焊接国际论坛. 北京: 中国机械工程学会, 2006: 105-109.
TTESSIN F, SCHWARZ B. Non copper coated solid wire leading the forming welding technology [C]//IFWT. Beijing: China Mechanical Engineering Society, 2006: 105-109. (in Chinese)
|
[8] |
輿石房樹.銅めっきなしマグ溶接ソリッドワイヤ「SE ワイヤ」[J].神戸製鋼技報, 2001, 51(1): 41-45.
|
[9] |
SHIMIZU H, ITOH K, MASAIE N, et al. Feedability of wires during metal active gas welding [J]. Science and Technology of Welding and Joining, 2006, 11(1): 81-93. doi: 10.1179/174329306X77876
|
[10] |
SHIMIZU H, YOKOTA Y, MIZUNO M, et al. Wear mechnism in contact tube [J]. Science and Technology of Welding and Joining, 2006, 11(1): 94-105. doi: 10.1179/174329306X77885
|
[11] |
鈴木励一, 中野利彦, 自動車用マグ·ミグ溶接ワイヤの動向[J]. Kobe Steel Engineering Reports, 2002, 52(3): 74-78.
|
[12] |
姚上卫.纳米材料在焊接领域的应用[J].焊接学报, 2007, 28(3): 109-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DHJI200611008.htm
YAO S W. Application of nano-materials in welding field [J]. Transactions of the China Welding Institution, 2007, 28(3): 109-112. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DHJI200611008.htm
|
[13] |
韩方, 陈冰泉.纳米材料在焊接领域的应用研究[J].电焊机, 2006, 36(11): 34-37. doi: 10.3969/j.issn.1001-2303.2006.11.009
HAN F, CHEN B Q. Application of nano-materials in welding field [J]. Electric Welding Mechine, 2006, 36(11): 34-37. (in Chinese) doi: 10.3969/j.issn.1001-2303.2006.11.009
|
[14] |
肖正伟, 曾振欧, 赵国鹏, 等.纳米TiO2涂层的制备及其在金属腐蚀防护中的应用[J].腐蚀与防护, 2007, 28(1): 33-36.
XIAO Z W, ZENG Z O, ZHAO G P, et al. Preparation and application of nano-TiO2 coatings for corrosion protction of metals [J]. Corrosion and Protection, 2007, 28(1): 33-36. (in Chinese)
|
[15] |
OJKO Y, SAITOH S, TATSUMA T, et al. Photo electrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel [J]. Acta Phytopathologica Sinica, 2001, 148(1): 24-28.
|
[16] |
闫亮. 钢焊丝表面纳米复合涂层的工艺及性能研究[D]. 保定: 河北工业大学, 2014.
YAN L. Study on nano-composite coating process and pereormance for steel wire surface [D]. Baoding: Hebei University of Technology, 2014. (in Chinese)
|
[17] |
李小婷. 焊丝表面热浸镀铝工艺及性能的研究[D]. 天津: 天津大学, 2010.
LI X T. The technology and performance of soldering wire during hot-dipping aluminum [D]. Tianjing: Tianjin University, 2010. (in Chinese)
|
[18] |
张亮. 高强钢无镀铜焊丝表面处理方法[D]. 镇江: 江苏科技大学, 2013.
ZHANG L. The research of high strength steel non-copper solid wire's surface treatment and mechanism [D]. Zhenjiang: Jiangsu University of Technology, 2013. (in Chinese)
|
[19] |
刘风尧, 林三宝, 杨春利, 等. A-TIG焊中活性剂对焊缝成形的影响[J].焊接学报, 2002, 23(1): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200404010.htm
LIU F Y, LIN S B, YANG C L, et al. Influence of active agent on the formation of weld in A-TIG welding [J]. Transactions of the China Welding Institution, 2002, 23(1): 1-4. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200404010.htm
|
[20] |
刘雷, 于治水, 陈洁.氧化物活性剂对熔池形状影响的研究现状[J].上海工程技术大学学报, 2010, 24(1): 89-94. http://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ201001022.htm
LIU L, YU Z S, CHEN J. Research status of oxide activity's impact on shape of weld pool [J]. Journal of Shanghai University of Engineering Science, 2010, 24(1): 89-94. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ201001022.htm
|
[21] |
张京海, 赵福辰, 丁永忠.表面覆层焊丝用于纯氩MIG焊接[J].焊接学报, 2005, 26(9): 65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200509015.htm
ZHANG J H, ZHAO F C, DING Y Z. Research on coated solid-wire for MIG welding [J]. Transactions of the China Welding Institution, 2005, 26(9): 65-68. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200509015.htm
|
[22] |
SHIMIZU H, ITOH T, MIYAMOTO T, et al. Behavior of solid wire's copper coating in molten droplet formation and transfer: surface tension of molten droplets in MAG welding[J]. Quarterly Journal of the Japan Welding Society, 2005, 23(1): 37-47. doi: 10.2207/qjjws.23.37
|
[23] |
齐彦昌, 彭云, 魏金山, 等.表面处理对熔化极气体保护焊实心焊丝工艺的影响[J].焊接学报, 2011, 32(1): 65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201101018.htm
QI Y C, PENG Y, WEI J S, et al. Impact of surface treatment on solid wire for gas shielded arc welding [J]. Transactions of the China Welding Institution, 2011, 32(1): 65-68. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201101018.htm
|
[24] |
齐彦昌, 彭云山, 魏金山, 等.涂层对熔化极气体保护焊实心焊丝熔滴过渡的影响[J].热加工工艺, 2010, 39(13): 114-116. doi: 10.3969/j.issn.1001-3814.2010.13.038
QI Y C, PENG Y S, WEI J S, et al. Effect of coat on droplet transfer of solid wire by gas shielded arc welding [J]. Hot Working Technology, 2010, 39(13): 114-116. (in Chinese) doi: 10.3969/j.issn.1001-3814.2010.13.038
|
[25] |
PADGURSKAS J, RUKUIZA R, PROSYČEVAS I, et al. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles [J]. Tribology International, 2013, 60: 224-232. doi: 10.1016/j.triboint.2012.10.024
|
[26] |
ZHANG Y J, XU Y H, YANG Y B, et al. Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives [J]. Industrial Lubrication and Tribology, 2015, 67(3): 227-232. doi: 10.1108/ILT-10-2012-0098
|
[27] |
WANG X L, YIN Y L, ZHANG G N, et al. Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel [J]. Physics Procedia, 2013, 50: 466-472. doi: 10.1016/j.phpro.2013.11.073
|
[28] |
CHOU R, HERNÁNDEZ B A, CABELLO J J, et al. Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles [J]. Tribology International, 2010, 43: 2327-2332. doi: 10.1016/j.triboint.2010.08.006
|
[29] |
ZHANG S W, HU L T, FENG D P, et al. Anti-wear and friction-reduction mechnism of Sn and Fe nanoparticles as additives of multialkylatedcyclopentanes under vacuum condition [J]. Vacuum, 2013, 87: 75-80. doi: 10.1016/j.vacuum.2012.07.009
|
[30] |
ABAD M D, SÁNCHEZ-LÓPEZ J C. Tribological properties of surface-modified Pd nanoparticles for electrical contacts [J]. Wear, 2013, 297: 943-951. doi: 10.1016/j.wear.2012.11.009
|
[31] |
PU S L, LIU M. Tunable photonic crystals based on MnFe2O4 magnetic fiuids by magnetic fields [J]. Journal of Alloys and Compounds, 2009, 481(1): 851-854.
|
[32] |
INGOLE S, CHARANPAHARI A, KAKADE A, et al. Tribological behavior of nano TiO2 as an additive in base oil [J]. Wear, 2013, 301: 776-785. doi: 10.1016/j.wear.2013.01.037
|
[33] |
LUO T, WEI X W, ZHAO H Y, et al. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives [J]. Ceramics International, 2014, 40: 10103-10109. doi: 10.1016/j.ceramint.2014.03.181
|
[34] |
JATTI V S, SINGH T P. Copper oxide nanoparticles as friction-reduction and anti-wear additives in lubricating oil [J]. Journal of Mechanical Science and Technology, 2015, 29(2): 793-798. doi: 10.1007/s12206-015-0141-y
|
[35] |
THOTTACKKAD M V, PERIKINALIL R K, KUMARAPILLAI P N. Experimental evaluation on the tribological properties of cocount oil by the addition of CuO nanoparticles [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 111-116. doi: 10.1007/s12541-012-0015-5
|
[36] |
GHAEDNIA H, JACKSON R L, KHODADADI J M. Experimental analysis of stable CuO nanoparticle enhanced lubricants [J]. Journal of Expermental Nonoscience, 2015, 10(1): 1-18.
|
[37] |
ZHOU G H, ZHU Y F, WANG X M, et al. Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nanoparticle additives in base oil [J]. Wear, 2013, 301: 753-757. doi: 10.1016/j.wear.2013.01.027
|
[38] |
KOGOVŠEK J, KALIN M. Various MoS2-WS2-and C-based micro-and nanoparticles in boundary lubrication [J]. Tribology Letter, 2014, 53: 585-597. doi: 10.1007/s11249-014-0296-1
|
[39] |
RATOI M, NISTE V B, WALKER J, et al. Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts [J]. Tribology Letter, 2013, 52: 81-91. doi: 10.1007/s11249-013-0195-x
|
[40] |
KALIN M, KOGOVŠEK J, REMŠKAR M. Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives [J]. Wear, 2012, 280/281: 36-45. doi: 10.1016/j.wear.2012.01.011
|
[41] |
LIN J S, WANG L W, CHEN G H. Modification of graphene platelets and their tribological properties as a lubricant additive [J]. Tribology Letter, 2011, 4(1): 209-215.
|
[42] |
ZHAO G Q, ZHAO Q, LI W M, et al. Tribological properties of nano-calcium borate as lithium grease additive [J]. Lubrication Science, 2014, 26: 43-53. doi: 10.1002/ls.v26.1
|
[43] |
李久盛, 郝利峰, 徐小红, 等.表面修饰纳米硼酸钙的制备及摩擦学性能[J].中国表面工程, 2010, 23(6): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201003010.htm
LI J S, HAO L F, XU X H, et al. Preparation and tribological properties of surface modified calcium borate nanoparticles [J]. China Surface Engineering, 2010, 23(6): 29-33. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201003010.htm
|
[44] |
郝利峰, 李久盛, 徐小红, 等.表面修饰的纳米硼酸镁的制备及其摩擦学研究[J].无机材料学报, 2010, 25(12): 1330-1334. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201012021.htm
HAO L F, LI J S, XU X H, et al. Preparation and tribological properties of surface-modified borate magnesium nanoparticles [J]. Journal of Inorganic Materials, 2010, 25(12): 1330-1334. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201012021.htm
|
[45] |
LIU R, WEI X C, TAO D H, et al. Study of preparation and tribological properties of rare earth nanoparticles in lubricating oil [J]. Tribology International, 2010, 43: 1082-1086. doi: 10.1016/j.triboint.2009.12.026
|
[46] |
ZHEN L F, XIN S, YIN Y B, et al. Shape controlled synthesis and tribological properties of CeVO4 nanoparticles as lubricating additive [J]. Journal of Rareearths, 2011, 29(7): 688-691.
|
[47] |
YU L, ZHANG L, YE F, et al. Preparation and tribological properties of surface-modified nano-Y2O3 as additive in liquid paraffin [J]. Applied Surface Science, 2012, 263: 655-659. doi: 10.1016/j.apsusc.2012.09.130
|
[48] |
ZHAO F Y, BAI Z M, FU Y, et al. Tribological properties of serpentine, La(OH)3 and their composite particles as lubricant additives [J]. Wear, 2012, 288: 72-77. doi: 10.1016/j.wear.2012.02.009
|
[49] |
顾卓明, 顾彩香.纳米二氧化铈润滑油添加剂的摩擦学特性[J].润滑与密封, 2007, 32(11): 91-97. doi: 10.3969/j.issn.0254-0150.2007.11.026
GU Z M, GU C X. Tribological performances of CeO2 nanoparticles used as lubricating oil additives [J]. Lubrication Engineering, 2007, 32(11): 91-97. (in Chinese) doi: 10.3969/j.issn.0254-0150.2007.11.026
|
[50] |
TARASOV S, KOLUBAEV A, BELYAEV M L, et al. Study of friction reduction by nano copper additives to motor oil [J]. Wear, 2002, 252(1/2): 63-69.
|
[1] | ZHOU Changjiang, WANG Hongbing, LEI Yuying, LIU Zhongming. Calculating and Measuring Methods for Gear Wear and Its Suppression Techniques[J]. Journal of Beijing University of Technology, 2018, 44(7): 987-1000. DOI: 10.11936/bjutxb2018040011 |
[2] | ZHENG Gangfeng, XIA Wandong, ZHOU Kaifeng, YAN Yingchun. Research on the Inwall Wear of Heavy Medium Cyclone Based on Ultrasonic Phased Array Technology[J]. Journal of Beijing University of Technology, 2018, 44(5): 796-800. DOI: 10.11936/bjutxb2017090003 |
[3] | LI Ran, ZHOU Zheng, HE Ding-yong, SONG Xiao-yan, ZHAO Qiu-ying. Wear and Corrosion Behavior of Wire-arc Sprayed Fe-based Coatings[J]. Journal of Beijing University of Technology, 2013, 39(10): 1576-1580. DOI: 10.3969/j.issn.0254-0037.2013.10.024 |
[4] | LIU Chao, AI Xing, LIU Zhan-qiang, WAN Yi. Wear Patterns and Mechanism of Coated Cemented Carbide Tool in High Speed Milling Superalloy GH2132[J]. Journal of Beijing University of Technology, 2010, 36(12): 1590-1594. DOI: 10.3969/j.issn.0254-0037.2010.12.002 |
[5] | YANG Qing-sheng, FENG Si-wei, TAN Xiang-jun. Stress Fields and Singularities at Notch and Crack Tips of Piezoelectric Materials[J]. Journal of Beijing University of Technology, 2006, 32(S1): 41-45. DOI: 10.3969/j.issn.0254-0037.2006.S1.008 |
[6] | JI Chang-wei, HE Hong, LI Chao, LIANG Chen, ZHANG Yue-hong, MA Chong-fang. Experimental Study on the Improvement of Ignition Characteristics of a HCCI Engine by Fuel Additives[J]. Journal of Beijing University of Technology, 2005, 31(6): 604-607. DOI: 10.3969/j.issn.0254-0037.2005.06.010 |
[7] | JI Chang-wei, HE Hong, MA Hui, ZHANG Yue-hong, ZHAO Yong, MA Zhong-fang. Experimental Study on the Effect of Fuel Additive on Diesel Emissions[J]. Journal of Beijing University of Technology, 2004, 30(4): 471-473. DOI: 10.3969/j.issn.0254-0037.2004.04.018 |
[8] | XIAO Jin-song, ZI Xue-hong, MA Zhong-fang. Performance Test of Nano TiO2 Coating Used in Spacecraft[J]. Journal of Beijing University of Technology, 2004, 30(1): 41-44. DOI: 10.3969/j.issn.0254-0037.2004.01.010 |
[9] | REN Min, ZHANG Pei-yun, SUN Zhuo, HAN Ai-min, ZHAI Le-heng, XU Xin-fu, WANG Li-gong. Research on Simulation Experiment Method of Piston Ring and Cylinder Liner Friction and Wearing[J]. Journal of Beijing University of Technology, 2002, 28(1): 62-65. DOI: 10.3969/j.issn.0254-0037.2002.01.015 |
[10] | Li Ping, et al, . Comparative Study on Corrosive Wear of white Cast Iron[J]. Journal of Beijing University of Technology, 1988, 14(4): 19-27. |
1. |
栗卓新,田振,李红,王义朋,曹健,周辰. 纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展. 材料导报. 2022(01): 141-148 .
![]() | |
2. |
韦如建,贺昕,王兴权,熊晓东,罗俊锋,闻明,王传军,陈艳辉,张泽,王立华,韩晓东. 纳米Ir薄膜中缺陷结构的原子尺度研究. 电子显微学报. 2021(02): 101-107 .
![]() | |
3. |
李红,栗卓新,巴凌志,邸新杰. 中国绿色焊接材料的现状和进展. 金属加工(热加工). 2020(10): 19-23 .
![]() | |
4. |
宋月,陈朝晖,杜春雨,郭七胜. 无镀铜焊丝生产工艺装备及未来发展趋势. 金属制品. 2020(05): 1-3 .
![]() | |
5. |
万千,栗卓新,张天理,KIMHee Jin. C-MoS_2-Fe_2O_3(Fe_3O_4)纳米润滑剂对无镀铜焊丝导电嘴磨损的影响. 焊接学报. 2019(02): 110-115+166 .
![]() | |
6. |
魏梦飞,姚润钢,孔红雨,朱官朋. 无镀铜无缝药芯焊丝发展分析. 焊接技术. 2019(07): 57-60 .
![]() | |
7. |
王立华,韦如建,方云义,罗俊锋,陈艳辉,李炜,韩晓东. 面心立方金属纳米材料变形机制研究进展. 北京工业大学学报. 2019(11): 1125-1146 .
![]() |