• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CHEN Yu, WANG Liang, WANG Bo. Optics and Wettability of Glasses Induced by the Aluminum Template[J]. Journal of Beijing University of Technology, 2017, 43(11): 1609-1613. DOI: 10.11936/bjutxb20161100008
Citation: CHEN Yu, WANG Liang, WANG Bo. Optics and Wettability of Glasses Induced by the Aluminum Template[J]. Journal of Beijing University of Technology, 2017, 43(11): 1609-1613. DOI: 10.11936/bjutxb20161100008

Optics and Wettability of Glasses Induced by the Aluminum Template

More Information
  • Received Date: November 03, 2016
  • Available Online: August 03, 2022
  • Published Date: November 09, 2017
  • To improve the transmittance and enhance the hydrophilicity on the surface of glass, a aluminum-induced method was used to prepare the light trapping structure. The Al thin films were prepared by DC magnetron sputter technique. The effects of annealing treatment at various substrate temperatures on the surface structure, optical properties and wettability of the glass were studied. The glass surface prepared was observed by scanning electron microscopy (SEM). The change of the transmittance of the glass after the process was measured by the UV-VIS spectrophotometer. The wetting property of the bare and etching glass was determined by the contact angle instrument. Results show the different structures of light trapping structure can be prepared by adjusting annealing temperature. The transmittance of the samples annealed at 150℃ reaches 94% within the wavelength range of 480-680 nm. The surface contact angle of the sample annealed at 200℃ decreases to 8.6°.

  • [1]
    INFANTE D, KOCH K W, MAZUMDER P, et al. Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring[J]. Nano Research, 2013, 6(6):429-440. doi: 10.1007/s12274-013-0320-z
    [2]
    LIN Y, HE J. Recent progress in antireflection and self-cleaning technology-from surface engineering to functional surfaces[J]. Progress in Materials Science, 2013, 61(8):94-143. http://linkinghub.elsevier.com/retrieve/pii/S0079642513000881
    [3]
    XIAO L, GAO J, XUE L, et al. Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings[J]. Advanced Functional Materials, 2010, 20(2):259-265. doi: 10.1002/adfm.v20:2
    [4]
    LEEM J W, YEH Y, YU J S. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns[J]. Optics Express, 2012, 20(4):4056-4066. doi: 10.1364/OE.20.004056
    [5]
    SCHULZE M, LEHR D, HELGERT M, et al. Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range[J]. Optics Letters, 2011, 36(19):3924-3926. doi: 10.1364/OL.36.003924
    [6]
    JONSSON A, ROOS A. Visual and energy performance of switchable windows with antireflection coatings[J]. Solar Energy, 2010, 84(8):1370-1375. doi: 10.1016/j.solener.2010.04.016
    [7]
    CLAPHAM&AMP P B, HUTLEY M C. Reduction of lens reflexion by the "Moth Eye" principle[J]. Nature, 1973, 244(5414):281-282. doi: 10.1038/244281a0
    [8]
    XU H, LU N, SHI G, et al. Biomimetic antireflective hierarchical arrays[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(8):4963-4967. http://d.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220799596/
    [9]
    CHEN P L, HONG R H, YANG S Y. Hot-rolled embossing of microlens arrays with antireflective nanostructures on optical glass[J]. Journal of Micromechanics & Microengineering, 2015, 25095001:1-9. http://adsabs.harvard.edu/abs/2015JMiMi..25i5001C
    [10]
    MOONGRAKSATHUM B, HSU P T, CHEN Y W. Photocatalytic activity of ascorbic acid-modified TiO2, sol prepared by the peroxo sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2016, 78:647-659. doi: 10.1007/s10971-016-3993-4
    [11]
    DU Y, HE H, JIN Y, et al. Graded porous glasses for antireflective applications formed by chemical treatment[J]. Applied Surface Science, 2012, 258(17):6431-6435. doi: 10.1016/j.apsusc.2012.03.055
    [12]
    XIONG J, DAS S N, KAR J P, et al. A multifunctional nanoporous layer created on glass through a simple alkali corrosion process[J]. Journal of Materials Chemistry, 2010, 20(45):10246-10252. doi: 10.1039/c0jm01695k
    [13]
    WANG J, VENKATARAJ S, BATTAGLIA C, et al. Analysis of optical and morphological properties of aluminium induced texture glass superstrates[J]. Japanese Journal of Applied Physics, 2012, 51(51):1472-1481. https://infoscience.epfl.ch/record/184247?ln=fr
    [14]
    SAHRAEI N, VENKATARAJ S, ABERLE A G, et al. Optimum feature size of randomly textured glass substrates for maximum scattering inside thin-film silicon solar cells[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 8981(3):395-406. doi: 10.1117/12.2036349.full
    [15]
    SAHRAEI N, FORBERICH K, VENKATARAJ S, et al. Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells[J]. Optics Express, 2014, 22(1):A53-A67. https://www.osapublishing.org/oe/figure.cfm?uri=oe-22-S1-A53-g009
    [16]
    VERMA L K, SAKHUJA M, SON J, et al. Self-cleaning and antireflective packaging glass for solar modules[J]. Renewable Energy, 2011, 36(9):2489-2493. doi: 10.1016/j.renene.2011.02.017
    [17]
    WANG Q, ZHANG B, QU M, et al. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid[J]. Applied Surface Science, 2008, 254(7):2009-2012. doi: 10.1016/j.apsusc.2007.08.039
    [18]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8):988-994. doi: 10.1021/ie50320a024
    [19]
    CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40:546-551. doi: 10.1039/tf9444000546
    [20]
    WANG L, SHI W, HOU Y, et al. Droplet transport on a nano-and microstructured surface with a wettability gradient in low-temperature or high-humidity environments[J]. Advanced Materials Interfaces, 2015, 1500040:1-7. http://d.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224330949/
    [21]
    BODEN S A, BAGNALL D M. Tunable reflection minima of nanostructured antireflective surfaces[J]. Applied Physics Letters, 2008, 93(13):133108-133110. doi: 10.1063/1.2993231
  • Cited by

    Periodical cited type(1)

    1. 王军,朱星光,张悦,夏国栋. 外电场作用下纳米结构表面润湿转变机理研究. 北京工业大学学报. 2024(10): 1162-1169 . 本站查看

    Other cited types(0)

Catalog

    Article views (202) PDF downloads (57) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return