Loading [MathJax]/jax/output/SVG/jax.js
    • 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Jin-ru, ZHANG Qing-qing. Wavelet Estimation of the Density Functions Under Fourier-oscillating Situation[J]. Journal of Beijing University of Technology, 2016, 42(10): 1597-1600. DOI: 10.11936/bjutxb2016040010
Citation: WANG Jin-ru, ZHANG Qing-qing. Wavelet Estimation of the Density Functions Under Fourier-oscillating Situation[J]. Journal of Beijing University of Technology, 2016, 42(10): 1597-1600. DOI: 10.11936/bjutxb2016040010

Wavelet Estimation of the Density Functions Under Fourier-oscillating Situation

More Information
  • Received Date: April 05, 2016
  • Available Online: May 28, 2023
  • In this paper, a wavelet method was used to deal with the density deconvolution problems under Fourier-oscillating situation. Wavelet estimators of the density function were constructed and upper bound over Besov space Bsrq ( L) was provided. Result shows that the estimator is adaptive and extends the theorems of paper [4,6].

  • [1]
    LIR,LIUY.Wavelet optimal estimations for a density with some additive noises[J].Applied and Computational Harmonic Analysis,2014,36(3):416-433.
    [2]
    LIR,LIU Y. Wavelet optimal estimations for density functions under severely ill-posed noises[J/OL]. Abstract andAppliedAnalysis,2013,2013: 1-7[2016-03-06].http:∥dx.doi.org/10.1155/2013/260573.
    [3]
    GENGZ,WANGJ.The mean consistency of wavelet density estimators[J].Journal of Inequalities and Applications,2015,111:1-14.
    [4]
    DELAIGLEA,MEISTERA.Nonparametric function estimation under Fourier‐oscillating noise[J].Statistica Sinica,2011,21(3):1065-1092.
    [5]
    GUOH,LIUY.Wavelet estimations for densities and their derivatives with Fourier oscillating noises[J]. Journal of Inequalities and Applications,2014(236):15.
    [6]
    PENSKYM,VIDAKOVICB.Adaptive wavelet estimator for nonparametric density deconvolution[J].The Annals of Statistics,1999,27:2033-2053.
    [7]
    DAUBECHIESI.Ten lecture on wavelets[M].Philadelphia: SIAM,1992:115-118.
    [8]
    HARDLEW,KERKYACHARIANG,PICARDD,et al.Wavelets, approximation and statistical applications[M].New York: Springer-Verlag,1998:80-117.

Catalog

    Article views (13) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return