• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZHAO Yaohua, SUN Qin, DIAO Yanhua, TANG Sheng. Experimental Study of Developing Convective Heat Transfer in a Multiport Microchannel Flat Tube[J]. Journal of Beijing University of Technology, 2017, 43(5): 793-800. DOI: 10.11936/bjutxb2016020031
Citation: ZHAO Yaohua, SUN Qin, DIAO Yanhua, TANG Sheng. Experimental Study of Developing Convective Heat Transfer in a Multiport Microchannel Flat Tube[J]. Journal of Beijing University of Technology, 2017, 43(5): 793-800. DOI: 10.11936/bjutxb2016020031

Experimental Study of Developing Convective Heat Transfer in a Multiport Microchannel Flat Tube

More Information
  • Received Date: February 25, 2016
  • Available Online: May 25, 2023
  • In order to improve the heat dissipation of electronic devices,reduce the problem of lower devices performance and short working life which was caused by high temperature, the friction and heat transfer characteristics of single phase forced convection in developing region with high heat flux through a multiport microchannel flat tube (MMFT) were comparatively investigated by experiments. Furthermore the influence of heat transfer capability in MMFT with developing flow was evaluated by three aspects: single/double-side heating, different methods of eliminating thermal resistance and different heat flux. The hydraulic diameter of the tube was 1.09mm, aspect ratio was 0.85 and Reynolds number was in the range of 206~4553. The results indicate that friction factor obtained by experiment is in good agreement with the classical developing channel laminar flow theory. In addition to heat transfer, single-side heating is superior to double-side heating whereas the discrepancy reduces with the increase of Reynold number. Different thermal resistance has obvious effect on heat transfer. Brazing lowers the surface temperature of heating device 10℃ than thermally conductive silicone grease. When Re<1000, temperature dependent viscosity variation on the convective heat transfer are significant, however for high Reynold, various heat flux effects Nusselt number little.

  • [1]
    刘焕玲,微通道换热研究[D].西安:西安电子科技大学,2004.

    LIU HL.Microchannel heat transfer research[D].Xi’an: Xidian University,2004. (in Chinese)
    [2]
    WAN Z M LIU J CHEN M. et al. Experimental investigation of flow and heat transfer in a porous micro heat sink for dissipating high flux Proceedings of the CSEE 2011 31 29 74 78

    WAN ZM,LIUJ,CHENM.et al.Experimental investigation of flow and heat transfer in a porous micro heat sink for dissipating high flux[J].Proceedings of the CSEE,2011,31(29):74-78. (in Chinese)

    [3]
    SYDEY MW,SUDIPTAB,SURESH VG.Piezoelectric fans using higher flexural modes for electronics cooling applications[J].IEEE Transactions on Components and Packaging Technologies,2007,30(1):119-128.
    [4]
    LEE DJ.Bubble departure radius under microgravity[J].Chemical Engineering Communications,1992,117(1):175-189.
    [5]
    TUCKERMAN DB,PEASE R F W. High-performance heat sinking for VLSI[J].Electron Device Letters,1981,2(5):126-129.
    [6]
    QU WL,MUDAWARI.Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink[J].International Journal of Heat and Mass Transfer,2002,45(12):2549-2565.
    [7]
    HETSRONIG,MOSYAKA,POGREBNYAKE,et al.Fluid flow in micro-channels[J].International Journal of Heat and Mass Transfer,2005,48(10):1982-1998.
    [8]
    PARK HS,PUNCHJ.Friction factor and heat transfer in multiple microchannels with uniform flow distribution[J].International Journal of Heat and Mass Transfer,2008,51(17):4535-4543.
    [9]
    AGOSTINIB,BONTEMPSA,THONONB.Effects of geometrical and thermophysical parameters on heat transfer measurements in small-diameter channels[J].Heat Transfer Engineering,2006,27(1):14-24.
    [10]
    DAIB,LIM,DANGC,et al.Investigation on convective heat transfer characteristics of single phase liquid flow in multi-port micro-channel tubes[J].International Journal of Heat and Mass Transfer,2014,70:114-118.
    [11]
    KAYS WM,CRAWFORD ME,WEIGANDB.Convective heat and mass transfer[M].New York: Tata McGraw-Hill Education,1996.
    [12]
    SHAHR,lONDONA.Laminar flow forced convection in ducts[M].London:Academic Press,1978.
    [13]
    HARMS TM,KAZMIERCZAK MJ,GERMER FM.Developing convective heat transfer in deep rectangular microchannels[J].International Journal of Heat & Fluid Flow,1999,20(2):149-157.
    [14]
    KUMARV,PARASCHIVOIUM,NIGAM K D P. Single-phase fluid flow and mixing in microchannels[J].Chemical Engineering Science,2011,66(7):1329-1373.
    [15]
    COPELAND D. Optimization of parallel plate heatsinks for forced convection //Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE. San Jose: IEEE 2000 266 272

    COPELANDD.Optimization of parallel plate heatsinks for forced convection[C]//Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE. San Jose: IEEE,2000:266-272.

    [16]
    GNIELINSKIV.New equations for heat and mass-transfer in turbulent pipe and channel flow[J].International Chemical Engineering,1976,16(2):359-368.
    [17]
    GHAJAR AJ,TAM LM.Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations[J].Experimental Thermal and Fluid Science,1994,8(1):79-90.
  • Related Articles

    [1]XIA Guodong, WANG Shaofeng, MA Dandan, LÜ Yuanzheng. Experimental Analysis on Flow and Heat Transfer Characteristics of Hybrid Nanofluids in Microchannels[J]. Journal of Beijing University of Technology, 2019, 45(11): 1063-1069. DOI: 10.11936/bjutxb2019050028
    [2]XU Yangjian, LI Xiangrui, YANG Qiuzu, LIU Shuo. Accurate Solution of Steady State Temperature Field of 2D-FGM Plate Under Convective Heat Transfer Boundary[J]. Journal of Beijing University of Technology, 2018, 44(10): 1284-1290. DOI: 10.11936/bjutxb2017040003
    [3]XIA Guodong, DU Mo, LIU Ran. Hydraulic and Thermal Characteristics of Nanofluid in Microchannel[J]. Journal of Beijing University of Technology, 2016, 42(3): 454-459,466. DOI: 10.11936/bjutxb2015060027
    [4]XIA Guo-dong, LI Yun-fei, ZHAI Yu-ling, JIANG Jing, MA Dan-dan. Fluid Flow and Heat Transfer on Microchannel Heat Sink With Changeable Cross-sections[J]. Journal of Beijing University of Technology, 2015, 41(2): 287-292. DOI: 10.11936/bjutxb2014050024
    [5]GUAN Ning, LIU Zhi-gang, ZHANG Cheng-wu, LIANG Shi-qiang. Influence of Wall Heat Flux on Heat Transfer Characteristics in Micro-cylinder-groups[J]. Journal of Beijing University of Technology, 2013, 39(4): 609-613.
    [6]ZHANG Jun-xia, WANG Li, FENG Jun-xiao. Numerical Analysis of Heat Transfer of Double Pipe Heat Exchangers[J]. Journal of Beijing University of Technology, 2012, 38(2): 288-293.
    [7]XIA Guo-dong, CHAI Lei, QI Jing-zhi. Flow and Heat Transfer Characteristics for Water in a Trapezoidal Silicon Microchannel Heat Sink[J]. Journal of Beijing University of Technology, 2011, 37(7): 1079-1084.
    [8]LIU Zhi-gang, ZHAO Yao-hua. Experimental Study on Influence of Axial Conductive Heat on Convective Heat Transfer in Micro Steel Tube[J]. Journal of Beijing University of Technology, 2006, 32(12): 1125-1129,1152.
    [9]Guo Hang, Huang Feng, Zhao Ran, Zhang Yue, Ding Liangshi. Friction and Heat Transfer Characteristics of Single Phase Flow of Refrigerant in Microchannels[J]. Journal of Beijing University of Technology, 1999, 25(3): 86-90.
    [10]Ding Liangshi. Computational Investigation of Natural Convective Heat Transfer in A Vertical Parallel Plates Channel with Large Interplates Spacing and Opened Edges[J]. Journal of Beijing University of Technology, 1989, 15(3): 45-54.
  • Cited by

    Periodical cited type(25)

    1. 陈敏敏,刘杰,李莉娜,邱立莉,杨伟伟,敬红. 我国城镇污水处理厂污泥产率系数现状及影响因素分析. 工业水处理. 2024(03): 24-29 .
    2. 郭炀煜,李炯坤. 运用线性规划优化城市污水管道设计研究. 建设科技. 2024(05): 73-75 .
    3. 储昭亮,刘莹,侯锋,干里里,周晓,范茏,徐农. 100μm砂粒在精细除砂一体化设备中的沉降模拟. 宿州学院学报. 2024(03): 22-27 .
    4. 吴海斌,陈祥,李巍,王先恺,王航,李锟,乔雪园,刘枫,董滨. 城市智慧水管家背景下市政污泥处理处置问题和解决思路的分析. 环境工程学报. 2024(05): 1442-1448 .
    5. 王碧云,孙艾林,许雪煌. “双碳”目标下海南地区污水处理厂更新改造对策分析及工程实例. 环境工程. 2024(11): 81-89 .
    6. 周晓,侯锋,干里里,刘莹,庞洪涛. 旋转式带式过滤器强化生活污水预处理的评估优化. 环境工程学报. 2023(02): 461-470 .
    7. 王京凡,杨庆,刘秀红,王锴晗,董余凡,程蓉,徐宗泽. 污水处理厂碳中和运行技术研究进展. 净水技术. 2023(03): 28-38+188 .
    8. 宋舒兴,隋倩雯,高超龙,狄斐,魏源送. 膜曝气生物膜反应器耦合厌氧氨氧化工艺处理低C/N比生活污水. 环境科学学报. 2023(04): 208-216 .
    9. 夏海琛,朱羽廷,夏四清. 基于正交层次法的水力旋流除砂器数值模拟结构优化. 环境工程. 2023(S1): 68-71+146 .
    10. 侯锋,周晓,王洪臣,干里里,刘莹,庞洪涛,曹效鑫. 喀斯特地区污水含砂特征及除砂工艺优化研究. 给水排水. 2023(05): 25-31 .
    11. 商文秀,王卫,李海斌,苏本生,李天雨. 北京某临时污水处理厂工艺设计及运行研究. 北京水务. 2023(S2): 44-49 .
    12. 李丹琳,郭帅,黄荣敏,张浩,成浩科. 基于供排水一体化监测的污水管网外来水入侵风险评估. 环境工程. 2023(11): 39-45 .
    13. 骆泽旭,舒诗湖,朱延平,陈志辉,杨仲侃. 基于CiteSpace知识图谱的污水处理碳排放分析. 上海工程技术大学学报. 2023(03): 311-317 .
    14. 周曼. 某污水处理厂碳排放核算研究. 广东化工. 2022(05): 132-134 .
    15. 宋新新,刘杰,林甲,李佳,李传举,江瀚,王洪臣,伊锋. 碳中和时代下我国能量自给型污水处理厂发展方向及工程实践. 环境科学学报. 2022(04): 53-63 .
    16. 荆玉姝,牟润芝,姜怡名,刘长青,杨延栋. 曝气精确控制实现污水处理厂节能降耗的应用. 环境工程. 2022(05): 141-145+165 .
    17. 高超龙,狄斐,宋舒兴,徐东耀,魏源送,隋倩雯. 一体式膜曝气生物膜反应器实现部分亚硝化-厌氧氨氧化耦合生物除磷. 环境科学学报. 2022(09): 18-29 .
    18. 夏海琛,朱羽廷,董滨,夏四清. 城市污水和污泥细微砂旋流去除技术综述. 给水排水. 2022(S1): 546-553 .
    19. 张旭. 环境工程中的城市污水处理分析. 清洗世界. 2022(11): 164-166 .
    20. 曹业始,吴军,刘智晓,张翼飞,KROSIS H,DAIGGER G T,彭永臻. 改造国内污水管网系统需要综合考虑的四个因素:定量分析. 给水排水. 2022(10): 45-55 .
    21. 朱磊,柏苏北. 城市污水治理问题与对策分析. 造纸装备及材料. 2022(12): 148-150 .
    22. 张维,孙永利,郑兴灿,王诣达,刘静,高晨晨,张文安,刘钰. 城镇居民生活污水污染物产生量测定技术难点与启示. 给水排水. 2021(05): 52-57 .
    23. 曹业始,ABEGGLEN Christian,刘智晓,KROISS Helmut,张悦,彭永臻. 改造当前国内污水管网需要综合考虑的四个因素. 给水排水. 2021(08): 125-137 .
    24. 沈耀良. 城市污水处理技术:走向低碳绿色. 苏州科技大学学报(工程技术版). 2021(03): 1-16 .
    25. 沈耀良. 我国农村生活污水处理:技术策略路径. 苏州科技大学学报(工程技术版). 2021(04): 1-16 .

    Other cited types(26)

Catalog

    Article views (40) PDF downloads (7) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return