Citation: | ZHANG Xiaoling, CHEN Jun, XIE Xuesong, ZHANG Bowen, XIONG Wenwen, REN Yun, YUAN Fang. IGBT Temperature Control Based on Self-calibration PID[J]. Journal of Beijing University of Technology, 2016, 42(7): 989-993. DOI: 10.11936/bjutxb2016010018 |
In order to solve the problem of IGBT temperature overshoot in power cycle test, a self-calibration PID algorithm was designed. PID controller was simulated by MATLAB. IGBT Junction temperature was tested by electrical testing theory and combined with embedded system. The self-calibration PID algorithm was applied to control IGBT junction temperature in thermal fatigue test. Experimental results show that both the self-calibration PID control and temperature can achieve better result. Thus system dynamic performance was improved much. It provided a better experimental environment for the IGBT life prediction.
[1] |
唐勇,汪波,陈明,等.高温下的IGBT 可靠性与在评估[J].电工技术学报,2014,29(6):17-23.
TANGY,WANGB,CHENM,et al.Reliability and on-line evaluation of IGBT modules under high temperature[J].Transactions of China Electrotechnical Society,2014,29(6):17-23. (in Chinese)
|
[2] |
刘宾礼,陈明,唐勇,等.IGBT芯片测温方法与温度分布研究[J].武汉理工大学学报,2014,37(1):144-148.
LIU BL,CHENM,TANGY,et al.Research on temperature measurement methods and distribution of IGBT chip[J].Journal of Wuhan University of Technology,2014,37(1):144-148. (in Chinese)
|
[3] |
WATANAA,TSUKUDAM,OMURAI.Real time degradation monitoring system for high power IGBT module under power cycling test[J].Microelectronics Reliability,2013,53(9/10/11):1692-1696.
|
[4] |
MOROZUMIA,YAMADAK,MIYASAKAT.Reliability of power cycling for IGBT power semiconductor modules[J].IEEE Transactions on Industry Applications,2003,39(3):665-671.
|
[5] |
朱阳军,苗庆海,张兴华.半导体功率器件结温的实时测量和在线测量[J].半导体学报,2007,28(6):980-983.
ZHU YJ,MIAO QH,ZHANG XH.Real time and on-line measurement of junction temperature for semiconductor power devices[J].Chinese Journal of Semiconductors,2007,28(6):980-983. (in Chinese)
|
[6] |
冯士维,谢雪松,吕长志,等.半导体器件热特性的电学法测量与分析[J].半导体学报,1999,10(5):358-364.
FENG SW,XIE XS,LÜ CZ,et al.Measurement and study on thermal characteristics of semiconductor devices by electrical method[J].Chinese Journal of Semiconductors,1999,10(5):358-364. (in Chinese)
|
[7] |
周文定,亢宝位.不断发展中的IGBT技术概述[J].电力电子技术,2007,41(9):115-118.
ZHOU WD,KANG BW.The summary on continuous development of IGBT technology[J].Power Electronics,2007,41(9):115-118. (in Chinese)
|
[8] |
朱悦,徐晓辉,宋涛,等.小型高精度恒温系统的研究[J].现代电子技术,2010(5):101-103.
ZHUY,XU XH,SONGT,et al.Small high precision constant temperature system[J]. Modern Electronics Technique,2010(5):101-103. (in Chinese)
|
[9] |
北京工业大学. IGBT热疲劳测试系统: 201410602370.2[P/OL].2015-01-28[2002-05-28].http://www.pss-system.gov.cn/sipopublicsearch/search/search/showViewList.shtml. G01R31/26.
|
[10] |
ZHENG HG,NGO K D T,LU G Q.Thermal characterization system for transient thermal impedance measurement and power cycling of IGBT modules[J].Microelectronics Reliability,2015(55):2575-2581.
|
[11] |
SUNDARAMOORTHY VK,BIANDAE,BLOCHR.A study on IGBT junction temperature (Tj) online estimation using gate-emitter voltage (Vge) at turn-off[J].Microelectronics Reliability,2014(54):2423-2431.
|
[12] |
罗佳.基于PID控制算法的自适应恒温温控系统[J].微计算机信息,2008,24(9):84-87.
LUOJ.Adaptive stable temperature control system based on PID control algorithm[J].Microcomputer Information,2008,24(9):84-87. (in Chinese)
|
[13] |
郭智源,韩建,张西鹏,等.基于STM32的PID和PWM温度控制系统研究[J].科学技术与工程,2011,11(16):3805-3807.
GUO ZY,HANJ,ZHANG XP,et al.Researched on the system of temperature control based on the PID and PWM of STM32[J].Science Technology and Engineering,2011,11(16):3805-3807. (in Chinese)
|
[14] |
边军,张福波,刘相华,等.红外线加热炉温度PID控制及优化[J].东北大学学报(自然科学版),2004,25(8):771-773.
BIANJ,ZHANG FB,LIU XH,et al.PID control and optimization of infrared heating furnace[J].Journal of Northeastern University (Natural Science),2004,25(8):771-773. (in Chinese)
|
[15] |
唐宝,王迎旭,赵毅君,等.自适应PID控制在风力发电机试验系统的应用[J].湖南工程学院报,2014,24(4):11-14.
TANGB,WANG YX,ZHAO YJ,et al.Adaptive PID control in wind generation test system[J].Journal of Hunan Institution of Engineering,2014,24(4):11-14. (in Chinese)
|
[16] |
刘金琨.先进PID控制MATLAB仿真[M].2版. 北京:电子工业出版社,2004:10-90.
|
[1] | LU Dechun, XU Bing, KONG Fanchao, MA Yiding, DU Xiuli. Intelligent Prediction Method for Settlement Curves of Shield Tunnel Based on Machine Learning Algorithms[J]. Journal of Beijing University of Technology, 2024, 50(11): 1285-1300. DOI: 10.11936/bjutxb2023100022 |
[2] | FANG Juan, LIU Zhenzhen, CHEN Siqi, LI Shuopeng. IRS-assisted NOMA-MEC Communication Resource Allocation Optimization Based on Deep Reinforcement Learning[J]. Journal of Beijing University of Technology, 2024, 50(8): 930-938. DOI: 10.11936/bjutxb2023020013 |
[3] | WANG Huina, LI Jinshu, LI Jianqiang, LIU Bo. Survey on Machine Learning-based Radiogenomic Study of Breast Cancer[J]. Journal of Beijing University of Technology, 2024, 50(6): 748-762. DOI: 10.11936/bjutxb2022080014 |
[4] | SUN Enchang, YUAN Yongyi, WU Bing, QU Hanxing, ZHANG Yanhua. Deep Reinforcement Learning and Mobile Communication Resource Management: Algorithms, Progress, and Prospects[J]. Journal of Beijing University of Technology, 2023, 49(1): 71-88. DOI: 10.11936/bjutxb2021040026 |
[5] | SUN Enchang, ZHANG Hui, HE Ruolan, ZHANG Dongying, ZHANG Yanhua. Mobile Communication Resource Management Based on Federated Learning: Methods, Progress and Prospect[J]. Journal of Beijing University of Technology, 2022, 48(7): 783-793. DOI: 10.11936/bjutxb2021030017 |
[6] | SUN Enchang, QU Hanxing, YUAN Yongyi, ZHANG Yanhua. Survey of D2D Communication Resource Allocation Methods in Cellular Networks[J]. Journal of Beijing University of Technology, 2021, 47(10): 1188-1200. DOI: 10.11936/bjutxb2020040007 |
[7] | ZHANG Yanhua, YANG Le, LI Meng, WU Wenjun, YANG Ruizhe, SI Pengbo. Optimization of Resource Allocation for Industrial Internet Based on Q-learning[J]. Journal of Beijing University of Technology, 2020, 46(11): 1213-1221. DOI: 10.11936/bjutxb2019070011 |
[8] | JI Junzhong, PANG Haoming, YANG Cuicui, LIU Jinduo. Text Classification Method Based on Multi-layer Extreme Learning Machine[J]. Journal of Beijing University of Technology, 2019, 45(6): 534-545. DOI: 10.11936/bjutxb2017120038 |
[9] | JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. Journal of Beijing University of Technology, 2017, 43(1): 28-35. DOI: 10.11936/bjutxb2016040093 |
[10] | REN Hong-ge, RUAN Xiao-gang. Self-learning Algorithm for Robot Based on Boltzamnn Machine[J]. Journal of Beijing University of Technology, 2012, 38(1): 60-64. |