Citation: | GUO Fu, LIU Suting, ZUO Yong, MA Limin. Pb-Sn-Sb-Ag Solder Thermal Fatigue of Hybrid Integrated Circuits[J]. Journal of Beijing University of Technology, 2016, 42(7): 1114-1120. DOI: 10.11936/bjutxb2016010003 |
To solve the problem of the reliability of solder joints caused by changes of ambient temperature in a hybrid integrated circuit, a new type of solder with high reliability was developed to meet the welding requirements of the miniaturization and high-density hybrid integrated circuit. Melting point test, reflow profile, phase analysis and thermal cycle test were conducted under the reference of IPC-9701A on the newly developed Pb-Sn-Sb-Ag solder and the fact that the microstructure and mechanical properties of solder joints changed significant before and after thermal cycling was discovered. The results show that the liquid point of solder is 245℃, reflow peak temperature is 267℃, and there are three major phases in the solder joint, namely, Pb, Sb 2Sn 3, and Ag 3Sn. The shear stress generated by thermal mismatch lead to micro cracks and the micro cracks extend further by the alternative temperature. The solder joints appear the fracture failure mode of whole peeling finally. The thickness of intermetallic compound and shear strength present approximate linear relationship gradually decreasing. Compared to the applied solders, the newly developed Pb-Sn-Sb-Ag solder has homogeneous microstructure and high reliability in -40-150℃ thermal cycling conditions.
[1] |
叶润清,罗乐.Sn62Pb36Ag2焊料的微结构粗化[J].功能材料与器件学报,1999,5(4):327-331.
YE RQ,LUOL.Sn62Pb36Ag2 solder microstructure coarsening[J].Journal of Functional Materials and Devices,1999,5(4):327-331. (in Chinese)
|
[2] |
IPC-国际电子工业联接协会.表面贴装锡焊件性能测试方法与鉴定要求:IPC-9701A中文版[S].IPC产品与可靠性委员会/SMT连接可靠性测试方法任务组, IPC TGASioa 6-10dCN技术组,2006.
|
[3] |
夏志东,史耀武,雷永平,等.热疲劳对锡锌铋钎料合金显微组织影响的研究[C]∥中国材料研究学会. 2002年中国材料研讨会论文集,北京:冶金工业出版社,2003.
XIA ZD,SHI YW,LEI YP,et al.Study of tin and zinc tin solder alloy microstructure under thermal fatigue [C]∥Chinese Materials Research Society. 2002 China Materials Symposium.Beijing:Metallurgical Industry Press,2003. (in Chinese)
|
[4] |
刘建影.微电子技术的可靠性——互连、器件及系统[M]. 郭福, 马立民, 译.北京:科学出版社,2013:33-35.
|
[5] |
肖慧,李晓延,陈健,等.SnAgCu/Cu 焊点热循环失效行为研究[J].稀有金属材料与工程,2014,43(8):2002-2006.
XIAOH,LI XY,CHENJ,et al.Research of SnAgCu/Cu solder thermal cycling failure behavior[J].Rare Metal Materials and Engineering,2014,43(8):2002-2006. (in Chinese)
|
[6] |
林健,雷永平,赵海燕,等.微连接接头在热疲劳过程中的破坏规律[J].焊接学报,2009,30(11): 65-68,72,116.
LINJ,LEI YP,ZHAO HY,et al.Damage law of micro joints in the process of thermal fatigue [J]. Welding Institution,2009,30(11):65-68, 72, 116. (in Chinese)
|
[7] |
XIA YH,XIE XM.Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling[J].Journal of Alloys and Compounds,2008,454(1):174-179.
|
[8] |
周洪彪.无铅微焊点热循环可靠性及寿命预测研究[D].哈尔滨: 哈尔滨工业大学,2008:23-35.
ZHOU HB.Study on reliability and life prediction for thermal cycling of lead-free micro solder [D].Harbin: Harbin Institute of Technology,2008:23-35. (in Chinese)
|
[9] |
DHAFER AS,MOHD F M S, IRFAN A B. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products[J].Microelectronics Reliability,2012,52(1):90-99.
|
[10] |
肖克来提,杜黎光,孙志国,等.SnAgCu表面贴装焊点在时效和热循环过程中的组织及剪切强度变化[J].金属学报,2001,37(4):439-444.
SHAWKRETA,DU LG,SUN ZG,et al.Shear strength and the microstructure changes of the surface mount solder in the aging and thermal cycling process[J].Acta Metallurgica Sinica,2001,37(4):439-444. (in Chinese)
|
[11] |
张启运,庄鸿寿.三元合金相图手册[M].北京:机械工业出版社,2011:528.
|
[1] | LÜ Yan, XIE Longyang, SONG Guorong, HE Cunfu, CHENG Jun, MAO Yanpian, JI Shengyang. Detection of Bolt's Axial Stress Based on Acoustoelastic Effect[J]. Journal of Beijing University of Technology, 2022, 48(9): 920-927. DOI: 10.11936/bjutxb2021020004 |
[2] | LU Dechun, CHENG Zhiliang, LIN Qingtao, DU Xiuli. Complex Stress Paths Constitutive Model for Clay Considering the Effect of Cohesion[J]. Journal of Beijing University of Technology, 2019, 45(9): 859-869. DOI: 10.11936/bjutxb2018030030 |
[3] | SHEN Feng, LI Yi, XIAO Peng, YE Hongling, LIU Zhaomiao. Effects of Shear Flow Behaviors in Grooves on Drag Reduction[J]. Journal of Beijing University of Technology, 2018, 44(2): 161-169. DOI: 10.11936/bjutxb2016090007 |
[4] | XU Cheng-shun, LIU Chen, LIU Hai-qiang, YIN Zhan-qiao. Function Analysis and Application of Vertical-Torsional Coupling Shear Apparatus[J]. Journal of Beijing University of Technology, 2013, 39(2): 233-238. |
[5] | HOU Shi-wei, LU De-chun, DU Xiu-li. Production Conditions and Formation Mechanism of Shear Band Under Plane Strain Condition[J]. Journal of Beijing University of Technology, 2012, 38(7): 1025-1031. |
[6] | JING Qiang, CAI Hai-bo, TAN Wen-song. Effects of Laminar Shear Stress on the Differentiation of Cord Blood CD34+ Cells[J]. Journal of Beijing University of Technology, 2010, 36(12): 1691-1694. |
[7] | XU Cheng-shun, LUAN Mao-tian, GUO Ying. Test of Sand Dynamic Stress-strain Behavior[J]. Journal of Beijing University of Technology, 2008, 34(9): 956-960. |
[8] | XU Cheng-shun, DU Xiu-li, YAO Ai-jun, HOU Shi-wei. Function Analysis and Application of Fully Automatic Static-dynamic Triaxial Shear Apparatus[J]. Journal of Beijing University of Technology, 2008, 34(6): 591-595. |
[9] | YANG Dao-bin, WU Ji-mao, FEI Ren-yuan, WANG Min. Property Improvement of an Electro-Rheological Fluid Based on Fibrin[J]. Journal of Beijing University of Technology, 2002, 28(4): 394-397. |
[10] | Chen Yan. Optical Image Processing with Holography Shearing Interference[J]. Journal of Beijing University of Technology, 1987, 13(3): 17-20. |