Citation: | LIAO Qi-zheng. Kinematic Modeling of Mechanisms Using Double Quaternion( Invited Paper)[J]. Journal of Beijing University of Technology, 2015, 41(11): 1611-1619. DOI: 10.11936/bjutxb2015060072 |
[1] |
YANG A T.Displacement analysis of spatial five-link mechanisms using(3×3)matrices with dual-number element[J].Journal of Engineering for Industry,Transactions of the ASME,1969,91(Series B):152-157.
|
[2] |
SELIG J M.Geometrical method in robotics[M].Heidelberg:Springer-Verlag,1996:149-163.
|
[3] |
DAI J S.Geometrical foundations and screw algebra for mechanisms and robotics[M].Beijing:Higher Education Press,2014:99-104.
|
[4] |
GAN D,LIAO Q.Dual quaternion-based inverse kinematics of the general spatial 7R mechanism[J].J Mechanical Engineering Science,2008,222:1593-1598.
|
[5] |
GE Q J.On the matrix algebra realization of the theory of bi-quaternions[J].Mechanism Synthesis and Analysis ASME,1994,70:425-432.
|
[6] |
GE Q J,KANG D L.Motion interpolation with G2composite Bezier motions[J].Transactions of the ASME,1995,117(12):520-525.
|
[7] |
QIAO Shu-guang.Inverse kinematic analysis of the general6R serial manipulators based on double quaternions[J].MMT,2010,45:193-199.
|
[8] |
何章鸣.基于对偶方法的运动群[D].长沙:国防科技大学研究生院,2010.HE Zhang-ming.Motion group based on dual method[D].Changsha:Graduate School of National University of Defense Technology,2010.(in Chinese)
|
1. |
吕庆霞,刘章军,姜云木,刘子心. 基于随机相位差谱的全非平稳地震动建模. 地震工程与工程振动. 2024(05): 139-148 .
![]() | |
2. |
周岸峰,李道奎,周仕明,周旋,崔达. 爆炸地冲击载荷计算方法综述. 工程爆破. 2023(05): 38-46+56 .
![]() |