Citation: |
GAO Zhenzhen, YANG Shilin, WUFU Abudoukade. Gröbner-Shirshov Basis of Quantum Group |
[1] |
BUCHBERGER B.An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal[D].Innsbruck:University of Innsbruck,1965.
|
[2] |
BERGMAN G M.The diamond lemma for ring theory[J].Advances in Mathematics,1978,29(2):178-218.
|
[3] |
SHIRSHOV A I.Some algorithmic problems for Lie algebras[J].Siberian Math J,1962,3:292-296.
|
[4] |
BOKUT L A,MALCOLMSON P.Gröbner-Shirshov bases for quantum enveloping algebras[J].Israel Journal of Mathematics,1996,96(1):97-113.
|
[5] |
YUNUS G,OBUL A.Gröbner-Shirshov basis of quantum group of type D4[J].Chin Ann Math:B,2011,32(4):581-592.
|
[6] |
KONG J S,OBUL A.Gröbner-Shirshov basis of quantum group of type B2[J].Southeast Asian Bulletin of Mathematics,2010,34:693-704.
|
[7] |
KANG S J,LEE K H.Gröbner-Shirshov basis for representation theory[J].J Korean Math Soc,2000,37(1):55-72.
|
[8] |
KANG S J,LEE K H.Gröbner-Shirshov bases for irreducible SLn+1 modules[J].Journal of Algebra,2000,232(1):1-20.
|
[9] |
CHIBRIKOV E S.On free Lie conformal algebras[J].Journal of Novosibirsk State University,2004,4(1):65-83.
|
[10] |
CHEN Y Q,CHEN Y S,ZHONG C Y.Compositiondiomond lemma for modules[J].Czechoslovak Math,2010,60(135):59-76.
|
[11] |
DRINFEL'D V G.Hopf algebras and the quantum YangBaxter equation[J].Doklady Akademii Nauk SSSR,1985,283(5):1060-1064.
|
[12] |
DEND B M,DU J,PARSHAL B,et al.Finite dimensional algebra and quantum groups[M].Mathematical Surveys and Monographs:Volume 150.Providence:Amer Math Soc,2008:157-175..
|
[13] |
RINGEL C M.PBW-bases of quantum groups[J].J Reine Angew Math,1996,470:51-88.
|
[14] |
JANTZEN J C.Lectures on Quantum groups[M].Graduate Studies in Mathematics:Volume 6.Providence:Amer Math Soc,1996:31-87.
|
[15] |
RINGEL C M.Hall algebras and quantum groups[J].Invent Math,1990,101:583-592.
|
1. |
梁旭华,刘杨,李雨润. 大型十字交叉地铁车站结构地震响应分析. 粉煤灰综合利用. 2024(03): 106-112 .
![]() | |
2. |
马晓明,苗晗,蒋录珍,安军海. 竖向地震动对地铁车站共构结构体系地震响应的影响研究. 城市轨道交通研究. 2024(09): 139-146+153 .
![]() | |
3. |
盛杰. 不同地震类型作用下多跨地铁车站结构的地震响应. 黑龙江科技大学学报. 2022(04): 474-480 .
![]() | |
4. |
潘婷婷,胡雪平,任天翔,徐博. 纵横波时差耦合作用下地铁车站地震响应分析. 地质力学学报. 2022(04): 596-604 .
![]() | |
5. |
黎思成,李原,靳金平,陶连金,丁鹏. 大型地下管沟复杂节点结构地震响应规律. 地下空间与工程学报. 2022(S2): 926-933 .
![]() | |
6. |
伍国韬,赵洪波,刘元珍,王凯. 平行地铁车站结构的地震响应特性. 黑龙江科技大学学报. 2021(01): 122-128 .
![]() | |
7. |
韩学川,陶连金,安韶,张宇,史明. 邻近地面建筑一体化地铁车站结构地震响应分析. 北京工业大学学报. 2021(04): 338-345 .
![]() | |
8. |
于仲洋,张鸿儒,邱滟佳,李昊. 无缝换乘地铁车站的地震响应特性研究. 湖南大学学报(自然科学版). 2021(11): 166-176 .
![]() |