• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
GAO Zhenzhen, YANG Shilin, WUFU Abudoukade. Gröbner-Shirshov Basis of Quantum Group Uq(C3) and Its Irreducible Modules[J]. Journal of Beijing University of Technology, 2016, 42(4): 632-636. DOI: 10.11936/bjutxb2015060053
Citation: GAO Zhenzhen, YANG Shilin, WUFU Abudoukade. Gröbner-Shirshov Basis of Quantum Group Uq(C3) and Its Irreducible Modules[J]. Journal of Beijing University of Technology, 2016, 42(4): 632-636. DOI: 10.11936/bjutxb2015060053

Gröbner-Shirshov Basis of Quantum Group Uq(C3) and Its Irreducible Modules

More Information
  • Received Date: June 17, 2015
  • Available Online: January 10, 2023
  • Based on Auslander-Reiten theory of valued graph C3 and Gröbner-Shirshov bases for representation theory,First by using the Ringel-Hall algebra approach,a Gröbner-Shirshov basis of quantum group Uq(C3) was constructed. Then, a Gröbner-Shirshov basis of finite dimensional irreducible modules of Uq(C3) was given by using double free module and composition lemma.
  • [1]
    BUCHBERGER B.An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal[D].Innsbruck:University of Innsbruck,1965.
    [2]
    BERGMAN G M.The diamond lemma for ring theory[J].Advances in Mathematics,1978,29(2):178-218.
    [3]
    SHIRSHOV A I.Some algorithmic problems for Lie algebras[J].Siberian Math J,1962,3:292-296.
    [4]
    BOKUT L A,MALCOLMSON P.Gröbner-Shirshov bases for quantum enveloping algebras[J].Israel Journal of Mathematics,1996,96(1):97-113.
    [5]
    YUNUS G,OBUL A.Gröbner-Shirshov basis of quantum group of type D4[J].Chin Ann Math:B,2011,32(4):581-592.
    [6]
    KONG J S,OBUL A.Gröbner-Shirshov basis of quantum group of type B2[J].Southeast Asian Bulletin of Mathematics,2010,34:693-704.
    [7]
    KANG S J,LEE K H.Gröbner-Shirshov basis for representation theory[J].J Korean Math Soc,2000,37(1):55-72.
    [8]
    KANG S J,LEE K H.Gröbner-Shirshov bases for irreducible SLn+1 modules[J].Journal of Algebra,2000,232(1):1-20.
    [9]
    CHIBRIKOV E S.On free Lie conformal algebras[J].Journal of Novosibirsk State University,2004,4(1):65-83.
    [10]
    CHEN Y Q,CHEN Y S,ZHONG C Y.Compositiondiomond lemma for modules[J].Czechoslovak Math,2010,60(135):59-76.
    [11]
    DRINFEL'D V G.Hopf algebras and the quantum YangBaxter equation[J].Doklady Akademii Nauk SSSR,1985,283(5):1060-1064.
    [12]
    DEND B M,DU J,PARSHAL B,et al.Finite dimensional algebra and quantum groups[M].Mathematical Surveys and Monographs:Volume 150.Providence:Amer Math Soc,2008:157-175..
    [13]
    RINGEL C M.PBW-bases of quantum groups[J].J Reine Angew Math,1996,470:51-88.
    [14]
    JANTZEN J C.Lectures on Quantum groups[M].Graduate Studies in Mathematics:Volume 6.Providence:Amer Math Soc,1996:31-87.
    [15]
    RINGEL C M.Hall algebras and quantum groups[J].Invent Math,1990,101:583-592.
  • Cited by

    Periodical cited type(8)

    1. 梁旭华,刘杨,李雨润. 大型十字交叉地铁车站结构地震响应分析. 粉煤灰综合利用. 2024(03): 106-112 .
    2. 马晓明,苗晗,蒋录珍,安军海. 竖向地震动对地铁车站共构结构体系地震响应的影响研究. 城市轨道交通研究. 2024(09): 139-146+153 .
    3. 盛杰. 不同地震类型作用下多跨地铁车站结构的地震响应. 黑龙江科技大学学报. 2022(04): 474-480 .
    4. 潘婷婷,胡雪平,任天翔,徐博. 纵横波时差耦合作用下地铁车站地震响应分析. 地质力学学报. 2022(04): 596-604 .
    5. 黎思成,李原,靳金平,陶连金,丁鹏. 大型地下管沟复杂节点结构地震响应规律. 地下空间与工程学报. 2022(S2): 926-933 .
    6. 伍国韬,赵洪波,刘元珍,王凯. 平行地铁车站结构的地震响应特性. 黑龙江科技大学学报. 2021(01): 122-128 .
    7. 韩学川,陶连金,安韶,张宇,史明. 邻近地面建筑一体化地铁车站结构地震响应分析. 北京工业大学学报. 2021(04): 338-345 . 本站查看
    8. 于仲洋,张鸿儒,邱滟佳,李昊. 无缝换乘地铁车站的地震响应特性研究. 湖南大学学报(自然科学版). 2021(11): 166-176 .

    Other cited types(8)

Catalog

    Article views (19) PDF downloads (6) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return