Categorification of the Vector Representation of U(so( 8,C ) )
-
摘要: 为了范畴化U (so (8, ) ) 向量表示的n次张量积, 定义了一般线性李代数gln的伯恩斯坦-盖尔芬德-盖尔芬德 (Bernstein-Gelfand-Gelfand, BGG) 范畴O的若干子范畴, 这些子范畴Grothendieck群的复化范畴化了D4型李代数包络代数向量表示n次张量积的底空间;定义了BGG范畴O上的一系列投射函子用于范畴化U (so (8, ) ) 在张量积上的作用;得到hi (1≤i≤4) 可由一对函子 (Hi+, Hi-) (1≤i≤4) 范畴化, ei、fi (1≤i≤3) 分别由εi、Fi (1≤i≤3) 范畴化, e4、f4分别由一对函子 (ε4+, ε4-) (F4+, F4-) 范畴化.Abstract: To categorify the n-tensor products of vector representation of U (so (8, ) ) , some subcategoriees of Bernstein-Gelfand-Gelfand (BGG) category O of the general linear Lie algebra glnwere defined. The complexifications of their Grothendieck groups were used for categorifing base spaces of ntensor products of vector representation. And some projective endfunctors of BGG category O, which were used for categorifing the action of U (so (8, ) ) on n-tensor products of vector representation, were defined. It was got that hi (1≤i≤4) can be categorified by a pair of functors (Hi+, Hi-) (1≤i≤4) , ei, fi (1≤i≤3) , can be categorified by εi, Fi (1≤i≤3) , e4, f4 can be categorified by a pair of functors (ε4+, ε4-) , (F4+, F4-) , respectively.
-
Keywords:
- vector representation /
- categorification /
- BGG category /
- projective functors
-
-
[1] CRANE L, FRENKEL I.Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[J].Topology and Physics J Math Phys, 1994, 35 (10) :5136-5154.
[2] KHOVANOV M, MAZORCHUK V, STROPPEL C.A brief review of abelian categorifications[J].Theory Appl Categ, 2009, 22:479-508.
[3] KHOVANOV M, MAZORCHUK V, STROPPEL C.A categori-fication of integral Specht modules[J].Amer Math Soc, 2008, 136 (4) :1163-1169.
[4] BERSTEIN J N, FRENKEL S I, KHOVANOV M.A catego-rification of the temperley-lieb algebra and schur quotients of U (sl2) via projective and Zukerman functors[J].Selecta Math:N S, 1999, 5 (2) :199-241.
[5] XU Yong-jun, YANG Shi-lin.A categorification of the spin representation of U (so (7;) ) via projective functors[J].Comm Algebra, 2013, 41 (10) :3868-3888.
[6] BERNSTEIN J N, GELFAND S I.Tensor products of finite and infinite dimensional representations of semisimple Lie algebras[J].Compositio Math, 1980, 41 (2) :245-285.
[7] HUMPHREYS J E.Representations of semisimple Lie algebras in the BGG category[M].Rhode Island:Amer Math Soc, 2008:1-222.
[8] HONG J, KANG S J.Introduction to quantum groups and crystal bases[M].New York:Amer Math Soc, 2002:197-203.
[9] BERNSTEIN J, GELFAND I, GELFAND S.Category of g-modules[J].Funkcional Anali Prilozen, 1976, 10 (2) :1-8.
[10] CRANE L.Clock and category:is quantum gravity algebraic[J].J Math Phys, 1995, 36 (11) :6180-6193.
[11] DIXMIER J.Enveloping algebras[M].New York:Amer Math Soc, 1996:66-70.
[12] MAZORCHUK V.Lectures on algebraic categorification[M].Zurich:Euro Math Soc, 2012:1-100.
[13] MAZORCHUK V, STROPPEL C.Categorification of (induced) cell modules and the rough structure of generalised Verma modules[J].Adv Math, 2008, 219 (4) :1363-1426.
[14] MAZORCHUK V, STROPPEL C.Categorification of Wedder-burn's basis for C[Sn][J].Arch Math:Basel, 2008, 91 (1) :1-11.
[15] STROPPEL C.Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors[J].Duke Math J, 2005, 126 (3) :547-596.
[16] SUSSAN J.Category O and slk-link invariants[OL].[2012-09-16].arXiv:math.QA/0701045.
[17] FRENKEL I, STROPPEL C, SUSSAN J.A categorification of finite dimensional irreducible representations of quantum and their tensor product[J].Selecta Math:N S, 2006, 12 (3/4) :379-431.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 7