• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

基于主题Hub值的元搜索

蒋宗礼, 李宪雷, 徐学可

蒋宗礼, 李宪雷, 徐学可. 基于主题Hub值的元搜索[J]. 北京工业大学学报, 2009, 35(3): 397-402. DOI: 10.3969/j.issn.0254-0037.2009.03.020
引用本文: 蒋宗礼, 李宪雷, 徐学可. 基于主题Hub值的元搜索[J]. 北京工业大学学报, 2009, 35(3): 397-402. DOI: 10.3969/j.issn.0254-0037.2009.03.020
JIANG Zong-li, LI Xian-lei, XU Xue-ke. Topic Hub Based Meta Search Engine[J]. Journal of Beijing University of Technology, 2009, 35(3): 397-402. DOI: 10.3969/j.issn.0254-0037.2009.03.020
Citation: JIANG Zong-li, LI Xian-lei, XU Xue-ke. Topic Hub Based Meta Search Engine[J]. Journal of Beijing University of Technology, 2009, 35(3): 397-402. DOI: 10.3969/j.issn.0254-0037.2009.03.020

基于主题Hub值的元搜索

详细信息
    作者简介:

    蒋宗礼(1956-),男,河南南阳人,教授.

  • 中图分类号: TP391.1

Topic Hub Based Meta Search Engine

  • 摘要: 为了提高元搜索引擎排序结果的质量,提出了成员引擎特征的主题Hub值表示和基于主题Hub值的结果排序算法.特征学习算法利用一组主题关联词对成员引擎的特征进行学习,并表示为主题Hub值的形式.排序算法根据主题Hub值计算结果的全局相关度对结果进行排序.实验结果表明,该模型取得了更好的排序质量.
    Abstract: To improve the ranking result quality of meta search engine,the authors propose and design a ranking algorithm based on the component engines by topic hub values.The algorithm uses a set of topic relating words to learn the feature of the component engines and denotes them as topic hub values.The ranking algorithm calculates the global similarity of the results according to the topic hub values.The experiments show that the model can get a better ranking quality.
  • [1]

    BRIN S,PAGE L.The anatomy of a large-scale hypertextual web search engine[J].Computer Networks and ISDN Systems,1998,30(7):107-117

    [2] 王晓宇,周傲英.万维网的链接结构分析及其应用综述[J].软件学报,2003,14(10):1768-1780. WANG Xiao-yu,ZHOU Ao-ying.Linkage analysis for the world wide web and its application:a survey[J].Journal of Software,2003,14(10):1768-1780.(in Chinese)
    [3]

    MARTIJN Koster.ALIWEB-archie-like indexing in the WEB[J].Computer Networks and ISDN Systems,1994,27(11): 110-120.

    [4]

    LUO Si,CALLAN Jamie.Relevant document distribution estimation method for resource selection[EB/OL].[2007-05-12]. http://www.cs.cmu.edu/-callan/Papers/sigir03-1si.pdf.

    [5]

    MENG Wei-yi,YU Clement,LIU King-lup.Building efficient and effective metasearch engines[J].ACM Computing Surveys,2002,34(1):48-89.

    [6] 卜东波,白硕,李国杰.文本聚类中权重计算的对偶性策略[J].软件学报,2002,13(11):2083-2089. BU Dong-bo,BAI Shuo,LI Guo-jie.The duplex strategy of term weighting in text clustering[J].Journal of Software, 2002,13(11):2083-2089.(in Chinese)
    [7]

    DUMAIS S T.LSI meets TREC:a status report[C]//HARMAN D.Proceedings of the 1st Text Retrieval Conference (TREC1).Gaithersburg,Maryland:National Institute of Standards and Technology,1993:137-152.

    [8]

    GAUCH Susan,WANG Gui-jun,GOMEZ Mario.Profusion:intelligent fusion from multiple,distributed search engines[J]. Journal of Universal Computing,1996,9(2):637-649.

    [9]

    YUWONO Budi,LEE Dik-lun.Wise:a world wide web resource database system[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(4):548-554.

    [10] 周茜,赵明生,扈曼.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):18-19. ZHOU Qian,ZHAO Ming-sheng,HU Man.Study on feature selection in chinesetext categorization[J].Journal of Chinese Information Processing,2004,18(3):18-19.(in Chinese)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-10-24
  • 网络出版日期:  2022-12-06

目录

    /

    返回文章
    返回