• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

多小波自适应阈值降噪在故障诊断中的应用

张建宇, 李文斌, 张随征, 宫兆盛, 崔玲丽, 阳子婧

张建宇, 李文斌, 张随征, 宫兆盛, 崔玲丽, 阳子婧. 多小波自适应阈值降噪在故障诊断中的应用[J]. 北京工业大学学报, 2013, 39(2): 166-173.
引用本文: 张建宇, 李文斌, 张随征, 宫兆盛, 崔玲丽, 阳子婧. 多小波自适应阈值降噪在故障诊断中的应用[J]. 北京工业大学学报, 2013, 39(2): 166-173.
ZHANG Jian-yu, LI Wen-bin, ZHANG Sui-zheng, GONG Zhao-sheng, CUI Ling-li, YANG Zi-jing. Application of Multiwavelet Adaptive Threshold Denoising in Fault Diagnosis[J]. Journal of Beijing University of Technology, 2013, 39(2): 166-173.
Citation: ZHANG Jian-yu, LI Wen-bin, ZHANG Sui-zheng, GONG Zhao-sheng, CUI Ling-li, YANG Zi-jing. Application of Multiwavelet Adaptive Threshold Denoising in Fault Diagnosis[J]. Journal of Beijing University of Technology, 2013, 39(2): 166-173.

多小波自适应阈值降噪在故障诊断中的应用

基金项目: 

国家863计划资助项目(2009AA4Z417)

详细信息
    作者简介:

    张建宇(1975-),男,副教授,主要从事机电设备故障诊断方面的研究,E-mail:zhjy_1999@bjut.edu.cn.

  • 中图分类号: TP306+.3

Application of Multiwavelet Adaptive Threshold Denoising in Fault Diagnosis

  • 摘要: 为了提取淹没在强背景噪声下的微弱故障信息,引入多小波自适应阈值降噪方法实现滚动轴承的信号去噪,并结合包络解调提取故障特征.多小波具有多个尺度函数和小波函数,具备单小波无法同时满足的对称性、正交性、紧支性和高阶消失矩等优良特性,可匹配信号中的不同特征信息.基于轴承外圈点蚀故障的仿真信号,分别利用GHM多小波和Db2小波对其进行降噪处理.通过信噪比的定量分析表明,相比单小波而言,多小波的降噪优势明显.针对滚动轴承的微点蚀实验信号和现场实采集的工程数据,多小波自适应阈值技术比单小波方法具有更好的降噪效果,且更易于提取出滚动轴承的早期故障信息.
    Abstract: To extract the weak fault information submerged in strong background noise of the bearing vibration signal,multiwavelet denoising method with adaptive threshold and envelope demodulation method are applied in this paper.Due to several scaling functions and wavelet functions,multiwavelets have many excellent properties that single wavelet cannot satisfy simultaneously,such as symmetry,orthogonality,compact support,and high vanishing moments,which make it match different characteristics of analyzed signal.GHM multiwavelet and Db2 wavelet are used to analyze the simulated outer race fault signal of rolling bearings,in which adaptive threshold selection strategy is introduced in multiwavelet denoising.Based on the comparison of denoising effects,multiwavelet adaptive threshold denoising is much more effective than single wavelet.Furthermore,multiwavelet denoising method is applied to experimental signal and engineering data individually.Results show that the denoising method can identify the incipient fault feature as early as possible,which cannot be realized by single wavelet.
  • [1] 寿海飞,曹志锡,楼建勇.基于小波变换的齿轮振动信号降噪分析[J].机械设计与制造,2007,7(10):125-126.SHOU Hai-fei,CAO Zhi-xi,LOU Jian-yong.Wavelettransform based on de-noising analysis of vibration singalfor gear[J].Machinery Design & Manufacture,2007,7(10):125-126.(in Chinese)
    [2]

    SUN Q,TANG Y.Singularity analysis using continuouswavelet transform for bearing[J].Mechanical Systems andSignal Processing,2002,16(6):1025-1041.

    [3]

    NIKOLAOU N G,ANTONIADIS I A.Rolling elementbearing fault diagnosis using wavelet packets[J].NDT & EInternational,2002,35(3):197-205.

    [4] 史东锋,鲍明,屈梁生.小波包络分析在滚动轴承诊断中的应用[J].中国机械工程.2000,11(12):1382-1385.SHI Dong-feng,BAO Ming,QU Liang-sheng.Applicationof wavelet envelope analysis to rolling bearing diagnosis[J].China Mechanical Engingeering,2000,11(12):1382-1385.(in Chinese)
    [5] 程军圣,于德介,邓乾旺,等.时间-小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击,2004,23(2):33-36.CHENG Jun-sheng,YU De-jie,DENG Qian-wang,et al.Application of time-wavelet power spectrum to faultdiagnosis of rolling bearings[J].Journal of Vibration andShock,2004,23(2):33-36.(in Chinese)
    [6] 雷文平,韩捷.小波-能量算子解调法的滚动轴承故障诊断[J].武汉理工大学学报,2008,30(5):128-131.LEI Wen-ping,HAN Jie.Fault diagnosis of rolling bearingby using wavelet and energy operator demodulation[J].Joural of Wuhan University of Technology,2008,30(5):128-131.(in Chinese)
    [7] 袁静,何正嘉,王晓东.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用[J].机械工程学报,2009,45(4):155-160.YUAN Jing,HE Zheng-jia,WANG Xiao-dong.Translation-invariant multiwavelets denoising usingneighboring coefficients and its application to monitoringand diagnosis[J].Journal of Mechanical Engineering,2009,45(4):155-160.(in Chinese)
    [8] 段汕,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报:自然科学版,2009,28(2):99-103.DUAN Shan,HE Juan,LIU Shao-ying.Application ofmultiwavelet transform in signal de-noising[J].Journal ofSouth-Central University for Nationalities:NationalSciences Edition,2009,28(2):99-103.(in Chinese)
    [9]

    KHADEM S E,REZAEE M.Development of vibrationsignature analysis using multiwavelet systems[J].Journalof Sound and Vibration,2003,261(4):613-633.

    [10]

    LIU Zhi-gang,ZHANG Da-bo,MA Dan-dan.De-noisingand compression of power fault signals based on bestmultiwavelet packet[C]//IEEE/PES Transmission andDistribution Conference & Exhibition:Asia and Pacific,Dalian,August 15-17,2005:1-5.

    [11] 钱勇,黄成军,陈陈,等.多小波消噪算法在局部放电检测中的应用[J].中国电机工程学报,2007,27(6):89-95.QIAN Yong,HUANG Cheng-jun,CHEN Chen,et al.Application of multi-wavelet based on denoising algorithmin partial discharge detection[J].Proceedings of theCSEE,2007,27(6):89-95.(in Chinese)
    [12] 王晓冬,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究[J].振动工程学报,2010,23(4):438-444.WANG Xiao-dong,HE Zheng-jia,ZI Yan-yang.Adaptive construction of multiwavelet and researchoncomposite fault diagnosis of rolling bearing[J].Journalof Vibration Engineering,2010,23(4):438-444.(inChinese)
    [13]

    GERNIMO J S,HARDIN D P,MASSOPUST P R.Fractal functions and wavelet expansions based on severalscaling functions[J].Journal of Approximation Theory,1994,78:373-401.

    [14] 夏国荣,徐志胜.多小波阈值降噪法在钢丝绳缺陷检测中的应用[J].测试技术学报,2007,21(4):311-323.XIA Guo-rong,XU Zhi-sheng.Application ofmultiwavelet threshold denoising method in wire ropefaults detection[J].Journal of Test and MeasurementTechnology,2007,21(4):311-323.(in Chinese)
    [15] 刘志刚,钱清泉.自适应阈值多小波故障暂态信号去噪方法[J].系统工程与电子技术,2004,26(7):878-880.LIU Zhi-gang,QIAN Qing-quan.Adaptive shrinkagevalue de-noising method of fault transient signals withmultiwavelets[J].Systems Engineering and Electronics,2004,26(7):878-880.(in Chinese)
    [16]

    STRELA V,HOLLER P N,STRANG G,et al.Theapplication of multi-wavelet filter banks to imageprocessing[J].IEEE Trans on Image Processing,1999,8(4):548-563.

计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-05
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回