• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

图像多阶特征对集的最优匹配模型

李玉鑑, 阳勇, 尹创业

李玉鑑, 阳勇, 尹创业. 图像多阶特征对集的最优匹配模型[J]. 北京工业大学学报, 2013, 39(11): 1680-1687. DOI: 10.3969/j.issn.0254-0037.2013.11.013
引用本文: 李玉鑑, 阳勇, 尹创业. 图像多阶特征对集的最优匹配模型[J]. 北京工业大学学报, 2013, 39(11): 1680-1687. DOI: 10.3969/j.issn.0254-0037.2013.11.013
LI Yu-jian, YANG Yong, YIN Chuang-ye. Optimal Correspondence Model for Image Matching With Multi-order Features[J]. Journal of Beijing University of Technology, 2013, 39(11): 1680-1687. DOI: 10.3969/j.issn.0254-0037.2013.11.013
Citation: LI Yu-jian, YANG Yong, YIN Chuang-ye. Optimal Correspondence Model for Image Matching With Multi-order Features[J]. Journal of Beijing University of Technology, 2013, 39(11): 1680-1687. DOI: 10.3969/j.issn.0254-0037.2013.11.013

图像多阶特征对集的最优匹配模型

基金项目: 

国家自然科学基金资助项目(61175004)

北京市自然科学基金资助项目(4112009)

北京市教育委会员科技发展重点项目(KZ01210005007).

详细信息
    作者简介:

    李玉鑑(1968—), 男, 教授, 博士生导师, 主要从事模式识别与机器学习方面的研究, E-mail: liyujian@bjut.edu.cn.

  • 中图分类号: TP391.4

Optimal Correspondence Model for Image Matching With Multi-order Features

  • 摘要: 针对图像匹配问题, 提出了一种图像多阶特征对集的最优匹配模型.图像的多阶特征主要是指一阶、二阶和三阶特征, 分别由单个特征点、特征点之间的边或者连接特征点的三角形来定义.最优匹配模型是一个以图像多阶特征为顶点集的加权二分图, 其优点是权重参数可以直接计算, 并能采用Kuhn-Munkras算法求解最大权对集.实验结果表明, 该模型具有很好的鲁棒性, 对于视频序列图像和涂鸦图像, 即使在存在较大缩放、旋转和仿射变换的情况下, 也能获得比较精确的匹配结果, 其准确度通常优于OpenCV中著名的Flann和BruteForce匹配算法.
    Abstract: An optimal correspondence model was proposed for solving image matching problems with multi-order features. A multi-order feature of an image refers to any of its first-, second- and third-order feature, which was defined by a simple feature point, an edge linking two feature points and a triangle connecting three feature points, respectively. The optimal correspondence model was a weighted bipartite graph with multi-order feature as its vertex. With this model the weight could be directly computed and the solution can be easily obtained by the Kuhn-Munkras algorithm. Results show that the model has good robustness for video sequence and graffiti images. Even with obvious rotation, scale, and affine transformation, it can produce a relatively accurate correspondence result, which is usually better than the famous Flann and BruteForce algorithms in OpenCV.
  • [1]

    BERG A, BERG T, MALIK J.Shape matching and object recognition using low distortion correspondence[C]∥Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:Institute of Electrical and Electronics Engineers Computer Society, 2005, 1:26-33.

    [2]

    ANAND R, ALAN Y, ERIC M.Convergence properties of the softassign quadratic assignment algorithm[J].Neural Computation, 1999, 11:1455-1474.

    [3]

    LAZEBNIK S, SCHMID C, PONCE J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]∥Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:Institute of Electrical and Electronics Engineers Computer Society, 2006, 2:2169-2178.

    [4]

    LEORDEANU M, HEBERT M.A spectral technique for correspondence problems using pairwise constraints[C]∥Proceedings of the IEEE International Conference on Computer Vision.Beijing:Institute of Electrical and Electronics Engineers Inc., 2005, 2:1482-1489.

    [5]

    SCHMID C, MOHR R.Local gray value invariants for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (5) :530-535.

    [6]

    LOWE D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60 (2) :91-110.

    [7]

    ZHANG H, BERG A, MAIRE M, et al.SVM-KNN:discriminative nearest neighbor classification for visual category recognition[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:Institute of Electrical and Electronics Engineers Computer Society, 2006, 2:2126-2136.

    [8]

    FISCHLER M, BOLLES C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of ACM, 1981, 24 (6) :381-395.

    [9]

    GOLD S, RANGARAJAN A.A graduated assignment algorithm for graph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (4) :377-388.

    [10]

    MACIEL J, COSTEIRA J.A global solution to sparse correspondence problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (2) :187-199.

    [11]

    COUR T, SRINIVASAN P, SHI J.Balanced graph matching[M].Cambridge:MIT Press, 2007:313-320.

    [12]

    CAETANO T, MCAULEY J, CHENG L, et al.Learning graph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (6) :1048-1058.

    [13]

    DUCHENNE O, BACH F, KWEON I, et al.A tensorbased algorithm for high-order graph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12) :2383-2395.

    [14] 王年, 周梅菊, 夏杰, 等.基于最小生成树与概率松弛结合的谱匹配算法[J].系统工程与电子技术, 2009, 31 (12) :2958-2962.WANG Nian, ZHOU Mei-ju, XIA Jie, et al.Method for spectral correspondence based on minimum spanning tree combined with probabilistic relaxation[J].Systems Engineering and Electronics, 2009, 31 (12) :2958-2962. (in Chinese)
    [15] 陈华杰, 冯卫平, 林岳松, 等.基于稀疏方位超图匹配的图像配准算法[J].光电子激光, 2010, 21 (12) :1865-1870.CHEN Hua-jie, FENG Wei-ping, LIN Yue-song, et al.Image registration algorithm based on sparse position hyper graph matching[J].Journal of Optoelectronics Laser, 2010, 21 (12) :1865-1870. (in Chinese)
    [16] 吴飞, 蔡胜渊, 郭同强, 等.三角形约束下的图像特征点匹配方法[J].计算机辅助设计与图形学学报, 2010, 22 (3) :503-510.WU Fei, CAI Sheng-yuan, GUO Tong-qiang, et al.Image feature points matching approach with triangle constraint[J].Journal of Computer-Aided Design&Computer Graphics, 2010, 22 (3) :503-510. (in Chinese)
    [17] 汤进, 江波, 罗斌.基于图的直方图及路径相似性的匹配方法[J].计算机辅助设计与图形学学报, 2011, 23 (9) :1481-1489.TANG Jin, JIANG Bo, LUO Bin.Graph matching based on graph histogram and path similarity[J].Journal of Computer-Aided Design&Computer Graphics, 2011, 23 (9) :1481-1489. (in Chinese)
    [18]

    REN Zhen-hua, ZHAO Jie-yu.Graph matching based a probabilistic spectral method[C]∥Proceedings—20117th International Conference on Natural Computation.New Jersey:IEEE Computer Society, 2011, 3:1512-1517.

    [19]

    GRIMSON W, LOZANO T.Localizing overlapping parts by searching the interpretation tree[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 9 (4) :469-482.

    [20]

    BAY H, TUYTELAARS T, VAN L, et al.SURF:speeded up robust features[J].Computer Vision and Image Understanding, 2008, 110 (3) :346-359.

    [21]

    KOSOWSHY J J, YUILLE A L.The invisible hand algorithm:solving the assignment problem with statistical physics[J].Neural Networks, 1994, 7:477-490.

    [22]

    BELONGGIE S, MALIK J, PUZICHA J.Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (4) :509-521.

    [23]

    ZHAO L.CMU/VASC image database[DB/OL].[2011-09-23].http:∥vasc.ri.cmu.edu//idb/html/motion/house/index.html.

    [24]

    MIKOLAJCZYK K.Affine covariant features[EB/OL].[2011-12-20].http:∥www.robots.ox.ac.uk/-vgg/research/affine/.

计量
  • 文章访问数:  19
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-10
  • 网络出版日期:  2022-11-02

目录

    /

    返回文章
    返回