Separability of Two Classes of Special Graphs in Multipartite Quantum Systems
-
摘要:
为了研究2类特殊密度矩阵的可分判据,通过研究2类特殊图的性质,给出了多体量子系统中这2类图的可分判据.首先,推广了并图在多体量子系统中的概念,给出了在多体系统中图顶点的分层方式.利用并图的概念、图顶点的分层、拉普拉斯矩阵的性质,证明了简单图的并图在多体量子系统下是可分的.其次,通过部分对称图的概念和图顶点分层的方式构造了一类新图.结合图的性质和图的分层,分析了新图及其拉普拉斯矩阵的性质,证明了新图在多体量子系统下代表可分态.
Abstract:Quantum entanglement is one of the most fascinating features of quantum theory and has numerous applications in quantum information processing and communication. Many unsolved problems in classical information theory can be solved by bipartite entanglement and multipartite entanglement. In this paper, the separable criterion of classes of density matrices was studied. The separable criterion of two classes of graphs was presented by studying two classes of special graphs in multipartite systems. Firstly, the concept of union graph was generalized. The separability of union graphs of simple graph in multipartite quantum systems was proven by the method of graph's layer and the property of Laplacian matrices. Secondly, a class of graph was constructed by the concept of partially symmetric and graph's layer. Combining the properties of graph and graph's layer, this class of graph and the properties of the relevant Laplacian matrices were analyzed. The research shows that the classes of graph represent a separable state in multipartite quantum systems.
-
Keywords:
- union graph /
- Laplacian matrix /
- separability
-
量子纠缠理论是量子信息领域的重要研究内容,纠缠态在信息处理和量子通信中起着重要的作用,利用两体和多体量子纠缠可以实现很多经典信息理论中无法完成的任务,例如量子隐形传态、量子克隆、量子密码等[1-3].文献[4]介绍了两体系统混合态可分的必要判据,一个可分态的密度矩阵部分转置之后特征值非负,这称为部分转置正(positive partial transpose,PPT)判据.这为判断态的纠缠性提供了重要依据.图理论是数学知识体系中一个重要的分支,在许多方面得到了应用,如最优化、网路系统等领域.将图理论和量子信息理论相结合,有助于对量子态可分问题进行研究和分析.文献[5]介绍了关于图的拉普拉斯矩阵,在一般情况下归一化后的拉普拉斯矩阵被认为是量子纠缠理论研究中的密度矩阵.文献[6-7]介绍了在三体量子系统下,图的拉普拉斯矩阵的可分性质.文献[8]指出在图的同构意义下,图的可分性是不变的.文献[9]通过对星图加边的方法,分析和研究了星图密度矩阵的谱分解相关问题.文献[10]利用加权有向图研究一类用图的拉普拉斯矩阵定义的量子态.文献[11]介绍了两体量子系统下的并图的可分性,并通过定义一种新的图算子得到了一类新图,证明了在一定条件下新图代表两体量子系统下一种可分态.本文将文献[11]的结论推广到多体量子系统,给出了在多体量子系统中图顶点的分层方法,推广了图理论中并图的定义,证明了并图在多体量子系统中是可分的,并且通过推广的图算子构造了多体量子系统下的一类新图,再结合图的分层方法,给出了新图在多体量子系统中的可分判据.
1. 基础知识
定义1 图G是指一个二元有序组(V(G), E(G)).其中V(G)={1,2,…, n}是非空且有限集,称为顶点集;E(G)={(i, j):i, j∈V(G)}是顶点集V(G)中的无序的元素偶对组成的集合,称为边集,其中的元素称为边.图的顶点重合为一点的边(i, i)称为环.这里把不含环和重复边的图叫做简单图.
定义2 设G是由n个顶点构成的图,则图G的邻接矩阵是一个n阶矩阵,记为A(G),其第i行j列元素为
$$ {\left[ {\mathit{\boldsymbol{A}}\left( G \right)} \right]_{i,j}} = \left\{ \begin{array}{l} 1,\;\;\;\;\;\left( {i,j} \right) \in E\left( G \right)\\ 0,\;\;\;\;\;\left( {i,j} \right) \notin E\left( G \right) \end{array} \right. $$ (1) 定义3 V(G)是图G的非空顶点集,vi在图G的度数是指V(G)中与vi相邻接的顶点的数目,记为dG(vi). D(G)是图G的度数矩阵,它是以dG(vi)为对角元素的对角矩阵.
定义4 图G的密度矩阵定义为
$$ {\mathit{\boldsymbol{\rho }}_q}\left( G \right) = \frac{{\mathit{\boldsymbol{Q}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{Q}}\left( G \right)} \right)}};{\mathit{\boldsymbol{\rho }}_l}\left( G \right) = \frac{{\mathit{\boldsymbol{L}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}} $$ 式中:tr(Q(G))表示矩阵Q(G)的迹,即矩阵主对角线元素之和. L(G)和Q(G)是图G的拉普拉斯矩阵,其中L(G)=D(G)-A(G),Q(G)=D(G)+A(G).
定义5 多体量子系统中,密度矩阵ρ如果能写成形式
$$ \mathit{\boldsymbol{\rho }} = \sum\limits_i {{q_i}\mathit{\boldsymbol{\rho }}_i^1 \otimes \mathit{\boldsymbol{\rho }}_i^2 \otimes \cdots \otimes \mathit{\boldsymbol{\rho }}_i^n} $$ (2) 则ρ在${H_1} \otimes {H_2} \otimes \ldots \otimes {H_n} $中是可分的.其中,$ \mathit{\boldsymbol{\rho }}_i^k$是Hk上的密度矩阵;$\sum\limits_i {{q_i} = 1, ({q_i} \ge 0);{H_k}\left( {k = 1, 2, \ldots , n} \right)} $是Hilbert空间.
定义6[11] 图G和图H的并图定义为:$G \cup H = \left( {V\left( G \right) \cup V\left( H \right), E\left( G \right) \cup E\left( H \right)} \right) $.设图G是一个带有q个顶点的图,$ V\left( G \right) = \left\{ {1, 2, \ldots , q} \right\}$,则$ mG = G \cup G \cup \ldots \cup G$ (m个图G的并).
2. 并图的可分性
为了更好地分析并图的可分性,对图G的顶点进行分层.首先给出三体量子系统图的分层方式.
设三体量子系统是m×n×q维的,对应的简单图G带有mnq个顶点,即V(G)中有mnq个元素,V(G)={1, 2, …, mnq}.令vi∈V(G),(i={1, 2, …, mnq}).先将V(G)中的顶点分成m层,每层含有nq个顶点,得到层为:C1, C2, …, Ci, …, Cm.邻接矩阵A(G)为
$$ \mathit{\boldsymbol{A}}\left( G \right) = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{1,1}}}&{{\mathit{\boldsymbol{A}}_{1,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{1,m - 1}}}&{{\mathit{\boldsymbol{A}}_{1,m}}}\\ {{\mathit{\boldsymbol{A}}_{2,1}}}&{{\mathit{\boldsymbol{A}}_{2,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{2,m - 1}}}&{{\mathit{\boldsymbol{A}}_{2,m}}}\\ \vdots&\vdots &{}& \vdots&\vdots \\ {{\mathit{\boldsymbol{A}}_{m - 1,1}}}&{{\mathit{\boldsymbol{A}}_{m - 1,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{m - 1,m - 1}}}&{{\mathit{\boldsymbol{A}}_{m - 1,m}}}\\ {{\mathit{\boldsymbol{A}}_{m,1}}}&{{\mathit{\boldsymbol{A}}_{m,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{m,m - 1}}}&{{\mathit{\boldsymbol{A}}_{m,m}}} \end{array}} \right] $$ (3) 再将每层nq个顶点分成n层,每层含有q个顶点.最终得到的层为:C1, 1, C1, 2, …, Ci, j, …, Cm, n.依据分层可以得到:vi, j, k=nq(i-1)+q(j-1)+k,各类的层表示为
$$ {C_i} = \left\{ {{v_{i,1,1}}, \cdots ,{v_{i,1,q}}, \cdots ,{v_{i,n,1}}, \cdots ,{v_{i,n,q}}} \right\} $$ $$ {C_{i,j}} = \left\{ {{v_{i,j,1}},{v_{i,j,2}}, \cdots ,{v_{i,j,q}}} \right\} $$ 邻接矩阵A(G)中的子块Ai, k表示为
$$ {\mathit{\boldsymbol{A}}_{i,k}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{i1,k1}}}&{{\mathit{\boldsymbol{A}}_{i1,k2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{i1,kn}}}\\ {{\mathit{\boldsymbol{A}}_{i2,k1}}}&{{\mathit{\boldsymbol{A}}_{i2,k2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{i2,kn}}}\\ \vdots&\vdots &{}& \vdots \\ {{\mathit{\boldsymbol{A}}_{in,k1}}}&{{\mathit{\boldsymbol{A}}_{in,k2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{in,kn}}} \end{array}} \right] $$ (4) 按照这种分层方式,可将邻接矩阵A(G)表示为
$$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{11,11}}}&{{\mathit{\boldsymbol{A}}_{11,12}}}& \cdots &{{\mathit{\boldsymbol{A}}_{11,1n}}}& \cdots &{{\mathit{\boldsymbol{A}}_{11,m1}}}& \cdots &{{\mathit{\boldsymbol{A}}_{11,mn}}}\\ {{\mathit{\boldsymbol{A}}_{12,11}}}&{{\mathit{\boldsymbol{A}}_{12,12}}}& \cdots &{{\mathit{\boldsymbol{A}}_{12,1n}}}& \cdots &{{\mathit{\boldsymbol{A}}_{12,m2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{12,mn}}}\\ \vdots&\vdots &{}& \vdots &{}& \vdots &{}& \vdots \\ {{\mathit{\boldsymbol{A}}_{1n,11}}}&{{\mathit{\boldsymbol{A}}_{1n,12}}}& \cdots &{{\mathit{\boldsymbol{A}}_{1n,1n}}}& \cdots &{{\mathit{\boldsymbol{A}}_{1n,m1}}}& \cdots &{{\mathit{\boldsymbol{A}}_{1n,mn}}}\\ \vdots&\vdots &{}& \vdots &{}& \vdots &{}& \vdots \\ {{\mathit{\boldsymbol{A}}_{m1,11}}}&{{\mathit{\boldsymbol{A}}_{m1,12}}}& \cdots &{{\mathit{\boldsymbol{A}}_{m1,1n}}}& \cdots &{{\mathit{\boldsymbol{A}}_{m1,m1}}}& \cdots &{{\mathit{\boldsymbol{A}}_{m1,mn}}}\\ \vdots&\vdots &{}& \vdots&\vdots&\vdots &{}& \vdots \\ {{\mathit{\boldsymbol{A}}_{mn,11}}}&{{\mathit{\boldsymbol{A}}_{mn,12}}}& \cdots &{{\mathit{\boldsymbol{A}}_{mn,1n}}}& \cdots &{{\mathit{\boldsymbol{A}}_{mn,m1}}}& \cdots &{{\mathit{\boldsymbol{A}}_{mn,mn}}} \end{array}} \right] $$ 下面给出多体量子系统中图的分层方式.
设多体系统分别为H1, H2, …, Hn,其中Hi的维数是Ni(i=1, 2, …, n).图G是有N1N2…Nn个顶点的简单图,即V(G)={1, 2, …, N1N2…Nn}.先将V(G)中的顶点依次分成N1层,每层N2…Nn个顶点,得到的层为C1, C2, …, Ci1, …, CN1,邻接矩阵A(G)表示为
$$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{1,1}}}&{{\mathit{\boldsymbol{A}}_{1,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{1,{N_1} - 1}}}&{{\mathit{\boldsymbol{A}}_{1,{N_1}}}}\\ {{\mathit{\boldsymbol{A}}_{2,1}}}&{{\mathit{\boldsymbol{A}}_{2,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{2,{N_1} - 1}}}&{{\mathit{\boldsymbol{A}}_{2,{N_1}}}}\\ \vdots&\vdots &{}& \vdots&\vdots \\ {{\mathit{\boldsymbol{A}}_{{N_1} - 1,1}}}&{{\mathit{\boldsymbol{A}}_{{N_1} - 1,2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{{N_1} - 1,{N_1} - 1}}}&{{\mathit{\boldsymbol{A}}_{{N_1} - 1,{N_1}}}}\\ {{\mathit{\boldsymbol{A}}_{{N_1},1}}}&{{\mathit{\boldsymbol{A}}_{{N_1},2}}}& \cdots &{{\mathit{\boldsymbol{A}}_{{N_1},{N_1} - 1}}}&{{\mathit{\boldsymbol{A}}_{{N_1},{N_1}}}} \end{array}} \right] $$ 再将每层中的N2N3…Nn个顶点依次分成N2层,每层N3N4…Nn个顶点,此时得到层为C1, 1, C1, 2, …, Ci1, i2, …, CN1, N2,邻接矩阵A(G)中的子块Ai1, j1表示为
$$ \left[ {\begin{array}{*{20}{c}} {{A_{{i_1}1,{j_1}1}}}&{{A_{{i_1}1,{j_1}2}}}& \cdots &{{A_{{i_1}1,{j_1}{N_2}}}}\\ {{A_{{i_1}2,{j_1}1}}}&{{A_{{i_1}2,{j_1}2}}}& \cdots &{{A_{{i_1}2,{j_1}{N_2}}}}\\ \vdots&\vdots &{}& \vdots \\ {{A_{{i_1}{N_2},{j_1}1}}}&{{A_{{i_1}{N_2},{j_1}2}}}& \cdots &{{A_{{i_1}{N_2},{j_1}{N_2}}}} \end{array}} \right] $$ 按此方法,依次将子块分割,直至进行(n-1)次分层,最终得到N1N2…Nn-1个层,其中有${v_{{i_1}, {i_2}, \ldots , {i_{n - 1}}}}, {i_n} = ({i_1} - 1){N_2} \ldots {N_n} + ({i_2} - 1){N_3} \ldots {N_n} + \ldots $ $ + {\rm{ }}({i_{n - 1}} - 1){N_n} + {i_n}({i_1} = 1, 2, \ldots , {N_1};{i_2} = 1, 2, \ldots , {N_2};{\rm{ }} \ldots ;{i_{n - 1}} = 1, 2, \ldots , {N_{n - 1}}).{\rm{ }}{C_{{i_1}, {i_2},\ldots , {i_{n - 1}}}} $ $ = \{ {v_{{i_1}, {i_2}, \ldots , {i_{n - 1}}}}, 1, {v_{{i_1}, {i_2}, \ldots , {i_{n - 1}}}}, 2, \ldots , {v_{{i_1}, {i_2}, \ldots , {i_{n - 1}}}}, {N_n}\} $.第(n-1)次分层后,将(n-2)次分层得到的邻接矩阵中的子块Ai1i2…in-2, j1j2…jn-2表示为
$$ \left[ {\begin{array}{*{20}{c}} {{A_{{i_1}{i_2} \cdots {i_{n - 2}}1,{j_1}{j_2} \cdots {j_{n - 2}}1}}}& \cdots &{{A_{{i_1}{i_2} \cdots {i_{n - 2}}1,{j_1}{j_2} \cdots {j_{n - 2}}{N_{n - 1}}}}}\\ \vdots &{}& \vdots \\ {{A_{{i_1}{i_2} \cdots {i_{n - 2}}{N_{n - 1}},{j_1}{j_2} \cdots {j_{n - 2}}1}}}& \cdots &{{A_{{i_1}{i_2} \cdots {i_{n - 2}}{N_{n - 1}},{j_1}{j_2} \cdots {j_{n - 2}}{N_{n - 1}}}}} \end{array}} \right] $$ 文献[11]给出了两体量子系统中图的部分对称定义,本课题组将其推广到多体量子系统,定义如下:
定义7 设图G是有N1N2…Nn个顶点的简单图,将图的顶点分层后,当$ ({v_{{i_1}, {i_2}, \ldots , {i_n}}}, {v_{{j_1}, {j_2}, \ldots , {j_n}}}) \in E\left( G \right)$时,也有$ ({v_{{j_1}, {i_2}, \ldots , {i_n}}}, {v_{{i_1}, {j_2}, \ldots , {j_n}}}) \in E\left( G \right)$,称图G是部分对称图.
为了讨论多体系统中并图的可分性,根据多体系统图的分层方式推广并图的定义如下:
定义8 设G是带有Nn个顶点的简单图,则${N_1}G = G \cup G \cup \ldots \cup G $ (N1个图G的并).令${N_1}{N_2}G = {N_1}({N_2}G) = {N_1}G \cup {N_1}G \cup \ldots \cup {N_1}G $ (N2个图N1G的并);${N_1}{N_2} \ldots {N_{n - 1}}G = {\rm{ }}{N_1}({N_2}( \ldots {N_{n - 1}}\left( G \right))) = G \cup \ldots \cup G $,(N1N2…Nn-1个图G的并).
根据多体系统在图顶点的分层方式,对并图N1N2…Nn-1G进行分层,可依次得到N1个Ci1类的层;N1N2个Ci1, i2类的层,最后得到了N1N2…Nn-1个Ci1, i2, …, in-1类的层.
接下来分析N1N2…Nn-1G的可分性.根据并图N1N2…Nn-1G的定义,可以将它的邻接矩阵和度数矩阵表示成形式
$$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right) = }\\ {{\rm{diag}}\left\{ {\mathit{\boldsymbol{A}}\left( {{N_2} \cdots {N_{n - 1}}G} \right), \cdots ,\mathit{\boldsymbol{A}}\left( {{N_2} \cdots {N_{n - 1}}G} \right)} \right\} = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \mathit{\boldsymbol{A}}\left( {{N_2} \cdots {N_{n - 1}}G} \right) = \cdots = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \cdots \otimes {\mathit{\boldsymbol{I}}_{{N_{n - 1}}}} \otimes \mathit{\boldsymbol{A}}\left( G \right)} \end{array} $$ (5) $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{D}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right) = }\\ {{\rm{diag}}\left\{ {\mathit{\boldsymbol{D}}\left( {{N_2} \cdots {N_{n - 1}}G} \right), \cdots ,\mathit{\boldsymbol{D}}\left( {{N_2} \cdots {N_{n - 1}}G} \right)} \right\} = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \mathit{\boldsymbol{D}}\left( {{N_2} \cdots {N_{n - 1}}G} \right) = \cdots = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \cdots \otimes {\mathit{\boldsymbol{I}}_{{N_{n - 1}}}} \otimes \mathit{\boldsymbol{D}}\left( G \right)} \end{array} $$ (6) 式中diag表示对角矩阵.再根据拉普拉斯矩阵的定义,可以得到
$$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{L}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right) = }\\ {{\rm{diag}}\left\{ {\mathit{\boldsymbol{L}}\left( {{N_2} \cdots {N_{n - 1}}G} \right), \cdots ,\mathit{\boldsymbol{L}}\left( {{N_2} \cdots {N_{n - 1}}G} \right)} \right\} = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \mathit{\boldsymbol{L}}\left( {{N_2} \cdots {N_{n - 1}}G} \right) = \cdots = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \cdots \otimes {\mathit{\boldsymbol{I}}_{{N_{n - 1}}}} \otimes \mathit{\boldsymbol{L}}\left( G \right)} \end{array} $$ (7) $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{Q}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right) = }\\ {{\rm{diag}}\left\{ {\mathit{\boldsymbol{Q}}\left( {{N_2} \cdots {N_{n - 1}}G} \right), \cdots ,\mathit{\boldsymbol{Q}}\left( {{N_2} \cdots {N_{n - 1}}G} \right)} \right\} = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \mathit{\boldsymbol{Q}}\left( {{N_2} \cdots {N_{n - 1}}G} \right) = \cdots = }\\ {{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes \cdots \otimes {\mathit{\boldsymbol{I}}_{{N_{n - 1}}}} \otimes \mathit{\boldsymbol{Q}}\left( G \right)} \end{array} $$ (8) 根据等式(5)~(8)可以得到如下定理.
定理1 设图G是一个有Nn个顶点的简单图,对于并图N1N2…Nn-1G,ρl(N1N2…Nn-1G)代表一个N1×N2×…×Nn维的可分态.
证明:由以上各式得
$$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{\rho }}_l}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right) = }\\ {\frac{{\mathit{\boldsymbol{L}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {{N_1}{N_2} \cdots {N_{n - 1}}G} \right)} \right)}} = }\\ {\frac{{{\mathit{\boldsymbol{I}}_{{N_1}}} \otimes {\mathit{\boldsymbol{I}}_{{N_2}}} \otimes \cdots \otimes {\mathit{\boldsymbol{I}}_{{N_{n - 1}}}} \otimes \mathit{\boldsymbol{L}}\left( G \right)}}{{{N_1}{N_2} \cdots {N_{n - 1}}{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}} = }\\ {\frac{{{\mathit{\boldsymbol{I}}_{{N_1}}}}}{{{N_1}}} \otimes \frac{{{\mathit{\boldsymbol{I}}_{{N_2}}}}}{{{N_2}}} \otimes \cdots \otimes \frac{{{\mathit{\boldsymbol{I}}_{{N_{n - 1}}}}}}{{{N_{n - 1}}}} \otimes \frac{{\mathit{\boldsymbol{L}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}}} \end{array} $$ 因为$ \frac{{{\mathit{\boldsymbol{I}}_{{N_1}}}}}{{{N_1}}}, \frac{{{\mathit{\boldsymbol{I}}_{{N_2}}}}}{{{N_2}}}, \ldots , \frac{{{\mathit{\boldsymbol{I}}_{{N_{n - 1}}}}}}{{{N_{n - 1}}}}, \frac{{\mathit{\boldsymbol{L}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}}$都是密度矩阵,所以ρl(N1N2…Nn-1G)是可分的.
3. 图G◇H的可分性
首先,给出三体量子系统${H_1} \otimes {H_2} \otimes {H_3} $中图G◇H的定义,设H1、H2、H3的维数分别为m、n、q.
定义9 设三体量子系统是m×n×q维的,图G是一个带有q个顶点的简单图.设图H是一个带有mnq个顶点的简单图,将其顶点分层后,满足以下5个条件:
1) 对于所有层Ci(i=1, 2, …, m)同层顶点间没有边;
2) 对于任意层Ci和Cj,或者层之间顶点没有边相连,或者Ai, k=Aj, l(i, j, k, l=1, 2, …, m;i≠k并且j≠l);
3) 对于任意层Ci, s和Cj, u,或者层之间顶点没有边相连,或者Ais, kt=Aju, lv(i, j, k, l=1, 2, …, m; s, t, u, v=1, 2,…, n;i≠k或s≠t且j≠l或u≠v);
4) 所有顶点间的度数相同;
5) ρl(H)在${H_1} \otimes {H_2} \otimes {H_3} $系统中是可分的.
将图H的每个层Ci, s中的顶点和边全部用图G代替,得到的图记为G◇H,其中V(G◇H)=V(H).
下面给出图G◇H的性质.
引理1 A(G◇H)=A(mnG)+A(H).
证明:因为图H满足同层顶点无边相连,所以A(H)对角线上的分块矩阵都是零矩阵,而A(mnG)除对角线上的分块矩阵外全部是零矩阵,并且对角线上的分块矩阵全是A(G).通过图mnG和图G◇H的定义可以得到
$$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}\left( {G\diamondsuit H} \right) = {\mathit{\boldsymbol{I}}_m} \otimes {\mathit{\boldsymbol{I}}_n} \otimes \mathit{\boldsymbol{A}}\left( G \right) + \mathit{\boldsymbol{A}}\left( H \right) = }\\ {\mathit{\boldsymbol{A}}\left( {mnG} \right) + \mathit{\boldsymbol{A}}\left( H \right)} \end{array} $$ 引理2 D(G◇H)=D(mnG)+D(H).
证明:任取V(G◇H)中的点vi, j, k,如果(vi, j, k, vs, u, t)∈E(G◇H),则(vi, j, k, vs, u, t)∈E(mnG)或E(H),所以dG◇H(vi, j, k)≤dmnG(vi, j, k)+dH(vi, j, k).
如果(vi, j, k, vs, u, t)∈E(H),则(vi, j, k, vs, u, t) $ \notin $ E(mnG)并且(vi, j, k, vs, u, t)∈E(G◇H).如果(vi, j, k, vs, u, t)∈E(mnG),则(vi, j, k, vs, u, t) $ \notin $ E(H)并且(vi, j, k, vs, u, t)∈E(G◇H).因此,dG◇H(vi, j, k)≥dmnG(vi, j, k)+dH(vi, j, k).
所以有dG◇H(vi, j, k)=dmnG(vi, j, k)+dH(vi, j, k).
引理3 L(G◇H)=L(mnG)+L(H)
Q(G◇H)=Q(mnG)+Q(H)
证明:由拉普拉斯矩阵的定义和引理1~2得
$$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right) = \mathit{\boldsymbol{D}}\left( {G\diamondsuit H} \right) - \mathit{\boldsymbol{A}}\left( {G\diamondsuit H} \right) = }\\ {\mathit{\boldsymbol{D}}\left( {mnG} \right) + \mathit{\boldsymbol{D}}\left( H \right) - \mathit{\boldsymbol{A}}\left( {mnG} \right) - \mathit{\boldsymbol{A}}\left( H \right) = }\\ {\left[ {\mathit{\boldsymbol{D}}\left( {mnG} \right) - \mathit{\boldsymbol{A}}\left( {mnG} \right)} \right] + \left[ {\mathit{\boldsymbol{D}}\left( H \right) - \mathit{\boldsymbol{A}}\left( H \right)} \right] = }\\ {\mathit{\boldsymbol{L}}\left( {mnG} \right) + \mathit{\boldsymbol{L}}\left( H \right)} \end{array} $$ 类似地可得:Q(G◇H)=Q(mnG)+Q(H).
根据定理1以及引理1~3可得到图G◇H的可分性.
定理2 图G◇H代表一个m×n×q维三体量子系统的可分态,即ρl(G◇H)是可分的.
证明:由图G◇H的定义及对应拉普拉斯矩阵的性质可得
$$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{\rho }}_l}\left( {G\diamondsuit H} \right) = \frac{{\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} = \frac{{\mathit{\boldsymbol{L}}\left( {mnG} \right) + \mathit{\boldsymbol{L}}\left( H \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} = }\\ {\frac{{\mathit{\boldsymbol{L}}\left( {mnG} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} + }\\ {\frac{{\mathit{\boldsymbol{L}}\left( H \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} = }\\ {{\mathit{\boldsymbol{\rho }}_l}\left( {mnG} \right)\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} + {\mathit{\boldsymbol{\rho }}_l}\left( H \right)\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}}} \end{array} $$ 由定理1可知ρl(mnG)是可分的,且ρl(mnG)= $ \frac{{{\mathit{\boldsymbol{I}}_m}}}{m} \otimes \frac{{{\mathit{\boldsymbol{I}}_n}}}{n} \otimes \frac{{\mathit{\boldsymbol{L}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}}$ (Im、In分别是m、n阶单位矩阵);由图G◇H的定义可知ρl(H)是可分的,所以${\mathit{\boldsymbol{\rho }}_l}\left( H \right) = \sum\limits_i {{q_i}\mathit{\boldsymbol{\rho }}_i^1 \otimes \mathit{\boldsymbol{\rho }}_i^2 \otimes \mathit{\boldsymbol{\rho }}_i^3} $.则
$$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{\rho }}_l}\left( {G\diamondsuit H} \right) = }\\ {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}}\left( {\frac{{{\mathit{\boldsymbol{I}}_m}}}{m} \otimes \frac{{{\mathit{\boldsymbol{I}}_n}}}{n} \otimes \frac{{\mathit{\boldsymbol{L}}\left( G \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( G \right)} \right)}}} \right) + }\\ {\sum\limits_i {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}}{q_i}\mathit{\boldsymbol{\rho }}_i^1 \otimes \mathit{\boldsymbol{\rho }}_i^2 \otimes \mathit{\boldsymbol{\rho }}_i^3} } \end{array} $$ 而且,各项的系数和为
$$ \begin{array}{*{20}{c}} {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} + \sum\limits_i {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}}{q_i}} = }\\ {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} + \frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}}\sum\limits_i {{q_i}} = }\\ {\frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {mnG} \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} + \frac{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( H \right)} \right)}}{{{\rm{tr}}\left( {\mathit{\boldsymbol{L}}\left( {G\diamondsuit H} \right)} \right)}} \cdot 1 = 1} \end{array} $$ 因此,ρl(G◇H)是可分的.
类似地,给出多体量子系统中图G◇H的定义,并分析其性质和可分性.
定义10 设多体量子系统的n个子系统为H1, H2, …, Hn,其中Hi的维数为Ni(i=1, 2, …, n).图G是一个带有Nn个顶点的简单图.图H是一个带有N1N2…Nn个顶点的部分图,将其顶点分层后,满足以下6个条件:
1) 对于所有层Ci1(i=1, 2, …, N1),同层顶点间没有边;
2) 对于任意层Ci1和Cj1,或者层之间顶点没有边相连,或者Ai1, j1=Ak1, l1(i1, j1, k1, l1=1, 2, …, N1;i1≠j1并且k1≠l1);
3) 对于任意层Ci1, i2和Cj1, j2,或者层之间顶点没有边相连,或者Ai1i2, j1j2=Ak1k2, l1l2(i1, j1, k1, l1= 1, 2, …, N1;i2, j2, k2, l2=1, 2, …, N2;i1≠j1或i2≠j2并且k1≠l1或k2≠l2);
4) 依次地每次分层产生的层都满足类似的条件,最终对所有的层Ci1, …, in-1和Cj1, …, jn-1,或者2层间无边,或者Ai1…in-1, j1…jn-1=Ak1…kn-1, l1…ln-1(ip, jp, kp, lp= 1, …, Np, p=1, …, n-1;$ \exists $ h1,h2∈{1, 2, …, n}使得ih1≠jh1且kh2≠kh2);
5) 所有顶点间的度数相同;
6) ρl(H)在H1 $ \otimes $ H2$ \otimes $…$ \otimes $Hn中是可分的.
将图H的每个层Ci1, …, in-1中的顶点和边用图G代替,得到一个多体系统下的新图,记为G◇H,其中V(G◇H)=V(H).
利用以上三体量子系统中的研究方法,可得如下结论.
引理4 A(G◇H)=A(N1N2…Nn-1G)+A(H)
引理5 D(G◇H)=D(N1N2…Nn-1G)+D(H)
引理6 L(G◇H)=L(N1N2…Nn-1G)+L(H)
Q(G◇H)=Q(N1N2…Nn-1G)+Q(H)
定理3 图G◇H代表一个N1×N2×…×Nn维多体可分态,即ρl(G◇H)是可分的.
4. 结论
1) 在多体量子系统中,设图G是带有Nn个顶点的简单图,则并图N1N2…Nn-1G是代表维数为N1×N2×…×Nn的可分态.
2) 在维数为m×n×q的三体量子系统中,图G是带有q个顶点的简单图,图H是带有mnq个顶点的部分对称图且满足一些条件,则图G◇H是可分态.
3) 在维数为N1×N2×…×Nn多体系统中,图G是带有Nn个顶点的简单图,图H是带有N1N2…Nn个顶点的部分对称图且满足一些条件,则图G◇H代表一个可分态.
-
[1] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67(6):661-663. doi: 10.1103/PhysRevLett.67.661
[2] BENNETT C H, WIESNER S J. Communication via one and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20):2881-2884. doi: 10.1103/PhysRevLett.69.2881
[3] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13):1895-1899. doi: 10.1103/PhysRevLett.70.1895
[4] PERES A. Sparability criterion for density matrices[J]. Physical Review Letters, 1996, 77(8):1413-1415. doi: 10.1103/PhysRevLett.77.1413
[5] BRAUNSTEIN S L, GHOSH S, SEVERINI S. The Laplacian of a graph as a density matrix:a basic combinatorial approach to separability of mixed states[J]. Annals of Combinatorics, 2006, 10(3):291-317. doi: 10.1007/s00026-006-0289-3
[6] WU C W. Multipartite separability of Laplacian matrices of graphs[J]. The Electronic Journal of Combinatorics, 2009, 16(1):61-72.
[7] WU C W. Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics[J]. Discrete Math, 2016, 339(4):1377-1381. doi: 10.1016/j.disc.2015.12.001
[8] WU C W. On graphs whose Laplacian matrix's multipartite separability is invariant under graph isomorphism[J]. Discrete Math, 2010, 310(21):2811-2814. doi: 10.1016/j.disc.2010.06.014
[9] LI J Q, CHEN X B, YANG Y X. Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph[J]. Quantum Information Processing, 2015, 14(12):4691-4713. doi: 10.1007/s11128-015-1134-6
[10] BIBHAS A, SUBHASHISH B, SATYABRATA A, et al. Laplacian matrices of weighted digraphs represented as quantum states[J]. Quantum Information Processing, 2017, 16(3):1-22.
[11] DUTTA S, ADHIKARI B, BANERJEE S, et al. Bipartite separability and non-local quantum operations on graphs[J]. Physical Review A, 2016, 94:012306. doi: 10.1103/PhysRevA.94.012306
-
期刊类型引用(2)
1. 范萍,杨国旺. 基于十量子比特团簇态的多量子双向链式受控量子隐形传态. 北京工业大学学报. 2023(06): 684-693 . 本站查看
2. 赵慧,张琳. 利用互无偏测量构造的可分判据. 北京工业大学学报. 2021(02): 194-200 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 114
- HTML全文浏览量: 4
- PDF下载量: 29
- 被引次数: 3