• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

Δ-结合代数的Green环

苏冬, 杨士林

苏冬, 杨士林. Δ-结合代数的Green环[J]. 北京工业大学学报, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014
引用本文: 苏冬, 杨士林. Δ-结合代数的Green环[J]. 北京工业大学学报, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014
SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014
Citation: SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014

Δ-结合代数的Green环

基金项目: 

国家自然科学基金资助项目 11271043

国家自然科学基金资助项目 11471186

北京市自然科学基金资助项目 1162002

详细信息
    作者简介:

    苏冬(1982-), 女, 博士研究生, 主要从事量子群及表示方面的研究, E-mail:ynsudong@126.com

  • 中图分类号: O153.3

Green Rings of the Δ-associative Algebras

  • 摘要:

    为了研究有限维Δ-结合代数的Green环,首先引入2类由八维半单Hopf代数扩张而得的有限维Δ-结合代数,然后引入有限维Δ-结合代数的Green环的概念,给出这2类有限维Δ-结合代数的Green环的生成元和生成关系,从而确定了它们的结构.

    Abstract:

    To study the Green rings of finite dimensional Δ-associative algebras, firstly, two classes of finite dimensional Δ-associative algebras were introduced by expanding eight dimension semisimple Hopf algebras. Then by generalizing the definition of the Green rings of the Hopf algebras to the Δ-associative algebras, the Green rings of the two classes of finite dimensional Δ-associative algebras and the structure were determined by the generators and relations.

  • 设ℂ为复数域,Mn(ℂ)表示域ℂ上n×n矩阵组成的全矩阵代数,除特殊说明外文中的代数、Hopf代数和⊗均定义在复数域ℂ上,所有模均是在复数域ℂ上有限维结合代数的左模.

    作为Hopf代数的一种推广,1998年Li[1]引入了弱Hopf代数的概念,随后他和Duplij[2]给出2个弱Hopf代数的例子,它们是由Uq(sl2)扩张而成的弱Hopf代数. 2005年Yang在文献[3]中给出了对应于Cartan矩阵的弱Hopf代数以及它们的PBW基. Cheng等[4-5]进一步考虑了对应于Uq(sl2)的弱Hopf代数,然后将相关结果推广到对应于Uq(sln)的弱Hopf代数上,Cheng[6]用同样的方法研究了相应于Sweedler代数的弱Hopf代数.

    近年来,关于Hopf代数的Green环的研究日渐兴起并成为热点. Chen等在文献[7]中考虑了Taft代数Hn(q)的Green环r(Hn(q))的生成元和生成关系;Li等[8]在文献[7]的基础上确定了广义Taft Hopf代数Hn, d(q)的Green环r(Hn, d(q))的结构,给出了它的所有幂零元的表达式.实际上,若一个有限维结合代数A带有一个代数同态Δ:AAA,并且满足(Δ⊗id)Δ=(id⊗Δ)Δ(称AΔ-结合代数),那么同样可以定义A的Green环或表示环.研究Δ-结合代数的Green环是一项很有意义的工作.

    本文主要考虑2类特殊的有限维Δ-结合代数的Green环,这2类代数均是由唯一的非交换非余交换的八维半单Hopf代数H8扩张而得.首先回顾H8的定义并给出它的一些性质.然后,把H8扩张成一个弱Hopf代数$ {\tilde H_8} $(Li定义下的弱Hopf代数),并确定了$ {\tilde H_8} $的Green环r($ {\tilde H_8} $)的生成元和生成关系.最后,把H8扩张成一个Δ-结合代数$ {\hat H_8} $,它不是一个弱Hopf代数.引入Δ-结合代数Green环的定义并考虑$ {\hat H_8} $的Green环结构,注意到它不含单位元.

    与Hopf代数相关的理论和知识可参见文献[9].

    定义1  设A是一个带有代数同态Δ:AAA的有限维结合代数,若(Δ⊗id)Δ=(id⊗Δ)Δ,则称AΔ-结合代数.

    注意到所有的Hopf代数、双代数均是Δ-结合代数.设AΔ-结合代数,沿用Sweedler记号,任意的aA记$ \Delta \left( a \right) = \sum\limits_{\left( a \right)} {{a_{(1)}}} m \otimes {a_{(2)}}n $,设MN是2个A-模,任意的mMnNaA,定义$ a\cdot\left( {m \otimes n} \right) = \sum\limits_{\left( a \right)} {{a_{(1)}}} m \otimes {a_{(2)}}n $,则MN也是A-模.记A-模M的同构类为[M],R(A)是由所有的[M]生成的自由Abel群,对任意A-模MN,在R(A)上定义

    $$ \left[ M \right]\left[ N \right] = \left[ {M \otimes N} \right] $$

    容易验证该乘法满足结合律和左、右分配律,从而R(A)是环;该环模去所有关系式

    $$ \left[ {M \otimes N} \right] - \left[ M \right] - \left[ N \right] $$

    所得的商环称为代数A的表示环或Green环,记为r(A).

    Hopf代数H8的定义和性质可参阅文献[10].

    H8是唯一的非交换非余交换的八维半单Hopf代数,它由stc生成,且满足

    $$ \begin{array}{*{20}{c}} {{s^2} = 1,{t^2} = 1}\\ {st = ts,cs = tc,sc = ct}\\ {{c^2} = \frac{1}{2}\left( {1 + s + t - st} \right)} \end{array} $$

    其余代数结构为

    $$ \begin{array}{*{20}{c}} {\Delta \left( s \right) = s \otimes s,\Delta \left( t \right) = t \otimes t}\\ {\Delta \left( c \right) = \frac{1}{2}\left( {1 \otimes 1 + 1 \otimes s + t \otimes 1 - t \otimes s} \right)\left( {c \otimes c} \right)}\\ {\varepsilon \left( s \right) = \varepsilon \left( t \right) = \varepsilon \left( c \right) = 1} \end{array} $$

    对极为

    $$ S\left( s \right) = {s^{ - 1}},S\left( t \right) = {t^{ - 1}},S\left( c \right) = c $$

    容易知道H8有一组基为{1, s, t, c, st, cs, sc, cst},并且

    $$ {H_8} \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus {M_2}\left( \mathbb{C} \right) $$

    所以H8的所有不可约模即为不可分解模.

    引理1  Hopf代数H8有4个不同构的一维不可约模Sm(m∈ℤ4),和1个二维的不可约模S,它们的H8-模结构为

    $$ \begin{array}{*{20}{c}} {{S_m}:s \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {t \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {c \cdot {v^{\left( m \right)}} = {{\rm{i}}^m}{v^{\left( m \right)}},{v^{\left( m \right)}} \in {S_m}} \end{array} $$
    $$ \begin{array}{*{20}{c}} {S:s \cdot {v_j} = {{\left( { - 1} \right)}^j}{v_j}}\\ {t \cdot {v_j} = {{\left( { - 1} \right)}^{j + 1}}{v_j}}\\ {c \cdot {v_j} = {v_{3 - j}},{v_j} \in S,j = 1,2} \end{array} $$

    证明   直接验证.

    引理2  作为H8-模,有下面结论:

    1) 如果m+m′(m, m′∈ℤ4)为奇数,那么SmSmSm+m′(mod4);如果m+m′为偶数,那么SmSm′≅Smm′(mod4).

    2) $ S \otimes {S_m} \cong {S_m} \otimes S \cong S, S \otimes S \cong \mathop \oplus \limits_m {S_m}$.

    证明   沿用引理1的记号.

    1) 假设{v(m)v(m′)}是SmSm的一组基,其中v(m)Sm, v(m′)Sm,那么SmSm作为H8-模有

    $$ \begin{array}{*{20}{c}} {s \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = {{\left( { - 1} \right)}^{m + m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = }\\ {{{\left( { - 1} \right)}^{m - m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {t \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = {{\left( { - 1} \right)}^{m + m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = }\\ {{{\left( { - 1} \right)}^{m - m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right)} \end{array} $$

    m+m′为奇数时

    $$ c \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = {{\rm{i}}^{m + m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) $$

    m+m′为偶数时

    $$ c \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) = {{\rm{i}}^{m - m'}}\left( {{v^{\left( m \right)}} \otimes {v^{\left( {m'} \right)}}} \right) $$

    因此如果m+m′为奇数,那么

    $$ {S_m} \otimes {S_{m'}} \cong {S_{m + m'\left( {\bmod 4} \right)}} $$

    如果m+m′为偶数,那么

    $$ {S_m} \otimes {S_{m'}} \cong {S_{m - m'\left( {\bmod 4} \right)}} $$

    2) 假设{v(m)vj}和{vjv(m)}分别是SmSSSm的一组基,其中v(m)Sm, vjS, j=1, 2.那么SmSSSm作为H8-模有

    $$ \begin{array}{l} s \cdot \left( {{v^{\left( m \right)}} \otimes {v_j}} \right) = {\left( { - 1} \right)^{m + j}}\left( {{v^{\left( m \right)}} \otimes {v_j}} \right)\\ t \cdot \left( {{v^{\left( m \right)}} \otimes {v_j}} \right) = {\left( { - 1} \right)^{m + 1 + j}}\left( {{v^{\left( m \right)}} \otimes {v_j}} \right) \end{array} $$

    mj为奇数时

    $$ c \cdot \left( {{v^{\left( m \right)}} \otimes {v_j}} \right) = {{\rm{i}}^{ - m}}\left( {{v^{\left( m \right)}} \otimes {v_{3 - j}}} \right) $$

    mj为偶数时

    $$ c \cdot \left( {{v^{\left( m \right)}} \otimes {v_j}} \right) = {{\rm{i}}^m}\left( {{v^{\left( m \right)}} \otimes {v_{3 - j}}} \right) $$

    而且

    $$ \begin{array}{l} s \cdot \left( {{v_j} \otimes {v^{\left( m \right)}}} \right) = {\left( { - 1} \right)^{m + j}}\left( {{v_j} \otimes {v^{\left( m \right)}}} \right)\\ t \cdot \left( {{v_j} \otimes {v^{\left( m \right)}}} \right) = {\left( { - 1} \right)^{m + 1 + j}}\left( {{v_j} \otimes {v^{\left( m \right)}}} \right) \end{array} $$

    mj为奇数时

    $$ c \cdot \left( {{v_j} \otimes {v^{\left( m \right)}}} \right) = {{\rm{i}}^m}\left( {{v_{3 - j}} \otimes {v^{\left( m \right)}}} \right) $$

    mj为偶数时

    $$ c \cdot \left( {{v_j} \otimes {v^{\left( m \right)}}} \right) = {{\rm{i}}^{ - m}}\left( {{v_{3 - j}} \otimes {v^{\left( m \right)}}} \right) $$

    显然m=0时,SS0S0SS.

    m=1时,令

    $$ {w_1} = {\rm{i}}{v^{\left( 1 \right)}} \otimes {v_2},{w_2} = {v^{\left( 1 \right)}} \otimes {v_1} $$

    容易验证{w1, w2}也是S1S的一组基,并且有

    $$ \begin{array}{*{20}{c}} {s \cdot {w_k} = {{\left( { - 1} \right)}^k}{w_k}}\\ {t \cdot {w_k} = {{\left( { - 1} \right)}^{k + 1}}{w_k}}\\ {c \cdot {w_k} = {w_{3 - k}},k = 1,2} \end{array} $$

    所以S1SS,类似方法可证SS1S.同理可得m=2、m=3时的情形.所以

    $$ S \otimes {S_m} \cong {S_m} \otimes S \cong S $$

    假设{vjvj}是SS的一组基,其中vj, vjS, j, j′=1, 2.那么SS作为H8-模有

    $$ \begin{array}{l} s \cdot \left( {{v_j} \otimes {v_{j'}}} \right) = {\left( { - 1} \right)^{j + j'}}\left( {{v_j} \otimes {v_{j'}}} \right)\\ t \cdot \left( {{v_j} \otimes {v_{j'}}} \right) = {\left( { - 1} \right)^{j + j'}}\left( {{v_j} \otimes {v_{j'}}} \right) \end{array} $$

    j+j′为奇数时

    $$ c \cdot \left( {{v_j} \otimes {v_{j'}}} \right) = {{\rm{i}}^{2j}}\left( {{v_{3 - j}} \otimes {v_{3 - j'}}} \right) $$

    j+j′为偶数时

    $$ c \cdot \left( {{v_j} \otimes {v_{j'}}} \right) = {v_{3 - j}} \otimes {v_{3 - j'}} $$

    $$ \begin{array}{*{20}{c}} {{{u'}_0} = {v_1} \otimes {v_1} + {v_2} \otimes {v_2},{{u'}_1} = - {\rm{i}}{v_1} \otimes {v_2} + {v_2} \otimes {v_1}}\\ {{{u'}_2} = {v_1} \otimes {v_1} + {v_2} \otimes {v_2},{{u'}_3} = {\rm{i}}{v_1} \otimes {v_2} + {v_2} \otimes {v_1}} \end{array} $$

    容易证明{u′n}(n∈ℤ4)也是SS的一组基,并且有

    $$ \begin{array}{*{20}{c}} {s \cdot \left( {{{u'}_n}} \right) = {{\left( { - 1} \right)}^n}{{u'}_n}}\\ {t \cdot \left( {{{u'}_n}} \right) = {{\left( { - 1} \right)}^n}{{u'}_n}}\\ {c \cdot \left( {{{u'}_n}} \right) = {{\rm{i}}^n}{{u'}_n}} \end{array} $$

    因此$ S \otimes S \cong \mathop \oplus \limits_m {S_m}$.

    推论1  设MN是任意的2个有限维H8-模,那么有一个H8-模同构

    $$ M \otimes N \cong N \otimes M $$

    本节首先把H8扩张成一个弱Hopf代数$ {\tilde H_8} $,然后给出它的Green环r($ {\tilde H_8} $)的生成元和生成关系.

    设$ {\tilde H_8} $是由ghx生成,且满足

    $$ \left\{ \begin{array}{l} {g^3} = g,{h^3} = h,{g^2} = {h^2}\\ hg = gh,x = hxg,x = gxh\\ {x^2} = \frac{1}{2}\left( {{g^2} + g + h - gh} \right) \end{array} \right. $$ (1)

    在生成元上定义$ \Delta :{{\tilde{H}}_{8}}\to {{\tilde{H}}_{8}}\otimes {{\tilde{H}}_{8}}、\varepsilon :{{\tilde{H}}_{8}}\to \mathbb{C}、T:{{\tilde{H}}_{8}}\to {{\tilde{H}}_{8}} $如下:

    $$ \begin{array}{*{20}{c}} {\Delta \left( g \right) = g \otimes g,\Delta \left( h \right) = h \otimes h}\\ {\Delta \left( x \right) = \frac{1}{2}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + h \otimes {g^2} - h \otimes g} \right)\left( {x \otimes x} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\varepsilon \left( 1 \right) = \varepsilon \left( g \right) = \varepsilon \left( h \right) = \varepsilon \left( x \right) = 1}\\ {T\left( 1 \right) = 1,T\left( g \right) = g,T\left( h \right) = h,T\left( x \right) = x} \end{array} $$

    命题1   映射ΔεT可自然地扩充到$ {{\tilde{H}}_{8}} $上使之是一个弱Hopf代数.

    证明  令mη是$ {{\tilde{H}}_{8}} $的乘法和单位.首先证明($ {{\tilde{H}}_{8}} $, m, η, Δ, ε)是一个双代数,易知

    $$ \begin{array}{*{20}{c}} {{{\left( {\Delta \left( g \right)} \right)}^3} = \Delta \left( g \right),{{\left( {\Delta \left( h \right)} \right)}^3} = \Delta \left( h \right)}\\ {{{\left( {\Delta \left( g \right)} \right)}^2} = {{\left( {\Delta \left( h \right)} \right)}^3},\Delta \left( h \right)\Delta \left( g \right) = \Delta \left( g \right)\Delta \left( h \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{{\left( {\varepsilon \left( g \right)} \right)}^3} = \varepsilon \left( g \right),{{\left( {\varepsilon \left( h \right)} \right)}^3} = \varepsilon \left( h \right)}\\ {{{\left( {\varepsilon \left( g \right)} \right)}^2} = {{\left( {\varepsilon \left( h \right)} \right)}^3},\varepsilon \left( h \right)\varepsilon \left( g \right) = \varepsilon \left( g \right)\varepsilon \left( h \right)}\\ {\varepsilon \left( x \right) = \varepsilon \left( g \right)\varepsilon \left( x \right)\varepsilon \left( h \right),\varepsilon \left( x \right) = \varepsilon \left( h \right)\varepsilon \left( x \right)\varepsilon \left( g \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{{\left( {\varepsilon \left( x \right)} \right)}^2} = \frac{1}{2}\left( {{{\left( {\varepsilon \left( g \right)} \right)}^2} + \varepsilon \left( g \right) + } \right.}\\ {\left. {\varepsilon \left( h \right) - \varepsilon \left( g \right)\varepsilon \left( h \right)} \right)} \end{array} $$

    由于

    $$ \begin{array}{*{20}{c}} {\Delta \left( h \right)\Delta \left( x \right)\Delta \left( g \right) = \frac{1}{2}\left( {h \otimes h} \right)\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + } \right.}\\ {\left. {h \otimes {g^2} - h \otimes g} \right)\left( {x \otimes x} \right)\left( {g \otimes g} \right) = }\\ {\frac{1}{2}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + h \otimes {g^2} - h \otimes g} \right).} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\left( {hx \otimes hx} \right)\left( {g \otimes g} \right) = \frac{1}{2}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + } \right.}\\ {\left. {h \otimes {g^2} - h \otimes g} \right)\left( {x \otimes x} \right) = \Delta \left( x \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\Delta \left( g \right)\Delta \left( x \right)\Delta \left( h \right) = \frac{1}{2}\left( {g \otimes g} \right)\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + } \right.}\\ {\left. {h \otimes {g^2} - h \otimes g} \right)\left( {x \otimes x} \right)\left( {h \otimes h} \right) = }\\ {\frac{1}{2}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + h \otimes {g^2} - h \otimes g} \right).} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\left( {gx \otimes gx} \right)\left( {h \otimes h} \right) = \frac{1}{2}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + } \right.}\\ {\left. {h \otimes {g^2} - h \otimes g} \right)\left( {x \otimes x} \right) = \Delta \left( x \right)} \end{array} $$

    又因为

    $$ {\left( {\Delta \left( x \right)} \right)^2} = \frac{1}{4}\left( {{g^2} \otimes {g^2} + {g^2} \otimes g + h \otimes {g^2} - h \otimes g} \right). $$
    $$ \begin{array}{*{20}{c}} {\left( {{g^2} \otimes {g^2} + {g^2} \otimes h + g \otimes {g^2} - g \otimes h} \right)\left( {{x^2} \otimes {x^2}} \right) = }\\ {\frac{1}{{16}}\left( {\left( {{g^2} + g + h + gh} \right) \otimes {g^2} + \left( {{g^2} - g + h - gh} \right) \otimes h + } \right.}\\ {\left. {\left. {\left( {{g^2} + g - h - gh} \right) \otimes g + \left( {{g^2} - g - h + gh} \right) \otimes gh} \right)} \right).} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\left( {{g^2} + g + h - gh} \right) \otimes \left( {{g^2} + g + h - gh} \right) = }\\ {\frac{1}{8}\left( {\left( {{g^2} + g + h + gh} \right) \otimes \left( {{g^2} + g + h - gh} \right) + } \right.}\\ {\left( {{g^2} - g + h - gh} \right) \otimes \left( {{g^2} - g + h + gh} \right) + }\\ {\left( {{g^2} + g - h - gh} \right) \otimes \left( {{g^2} + g - h + gh} \right) + }\\ {\left. {\left( { - {g^2} + h + g - gh} \right) \otimes \left( { - {g^2} + g + h + gh} \right)} \right) + }\\ {\frac{1}{2}\left( {{g^2} \otimes {g^2} + g \otimes g + h \otimes h - gh \otimes gh} \right) = }\\ {\frac{1}{2}\left( {{{\left( {\Delta \left( g \right)} \right)}^2} + \Delta \left( g \right) + \Delta \left( h \right) - \Delta \left( g \right)\Delta \left( h \right)} \right)} \end{array} $$

    因此Δε保持关系式(1),Δε分别扩展为从$ {{\tilde{H}}_{8}} $到$ {{\tilde{H}}_{8}}\otimes {{\tilde{H}}_{8}} $和从$ {{\tilde{H}}_{8}} $到ℂ的代数同态.另一方面易知对任意X=ghx

    $$ \begin{array}{*{20}{c}} {\left( {\Delta \times {\rm{id}}} \right)\Delta \left( X \right) = \left( {{\rm{id}} \otimes \Delta } \right)\Delta \left( X \right)}\\ {\left( {\varepsilon \times {\rm{id}}} \right)\Delta \left( X \right) = {\rm{id}}\left( X \right) = \left( {{\rm{id}} \otimes \varepsilon } \right)\Delta \left( X \right)} \end{array} $$

    从而$ {{\tilde{H}}_{8}}$是一个双代数.

    下面证明T诱导了$ {{\tilde{H}}_{8}} $上的弱对极,即有T*id *T=T以及id*T*id=id.容易知道

    $$ \begin{array}{*{20}{c}} {{{\left( {T\left( g \right)} \right)}^3} = T\left( g \right),{{\left( {T\left( h \right)} \right)}^3} = T\left( h \right)}\\ {{{\left( {T\left( g \right)} \right)}^2} = {{\left( {T\left( h \right)} \right)}^2},T\left( h \right)T\left( g \right) = T\left( g \right)T\left( h \right)} \end{array} $$

    由于

    $$ T\left( g \right)T\left( x \right)T\left( h \right) = x = T\left( x \right) $$

    因此T保持x=hxg的反代数关系,同理T也保持x=gxh的反代数关系,进一步地

    $$ \begin{array}{*{20}{c}} {{{\left( {T\left( x \right)} \right)}^2} = \frac{1}{2}\left( {{{\left( {T\left( g \right)} \right)}^2} + T\left( g \right) + } \right.}\\ {\left. {T\left( h \right) - T\left( h \right)T\left( g \right)} \right)} \end{array} $$

    从而T可扩展为$ {{\tilde{H}}_{8}} $到$ {{\tilde{H}}_{8}}$的反代数同态.

    一方面,有

    $$ \begin{array}{*{20}{c}} {T * {\rm{id}} * T\left( g \right) = m\left( {T \otimes {\rm{id}} \otimes T} \right)\left( {g \otimes g \otimes g} \right) = }\\ {{g^3} = g = T\left( g \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{\rm{id}} * T * {\rm{id}}\left( g \right) = m\left( {{\rm{id}} \otimes T \otimes {\rm{id}}} \right)\left( {g \otimes g \otimes g} \right) = }\\ {{g^3} = g = {\rm{id}}\left( g \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {T * {\rm{id}} * T\left( h \right) = m\left( {T \otimes {\rm{id}} \otimes T} \right)\left( {h \otimes h \otimes h} \right) = }\\ {{h^3} = h = T\left( h \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{\rm{id}} * T * {\rm{id}}\left( h \right) = m\left( {{\rm{id}} \otimes T \otimes {\rm{id}}} \right)\left( {h \otimes h \otimes h} \right) = }\\ {{h^3} = h = {\rm{id}}\left( h \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {T * {\rm{id}} * T\left( x \right) = m\left( {T \otimes {\rm{id}} \otimes T} \right)\left( {\left( {{g^2}x + hx} \right) \otimes } \right.}\\ {\left( {{g^2}x + hx} \right) \otimes {g^2}x + \left( {{g^2}x + hx} \right) \otimes \left( {{g^2}x - hx} \right) \otimes }\\ {gx + \left( {{g^2}x - hx} \right) \otimes \left( {gx + ghx} \right) \otimes gx + \left( {{g^2}x - hx} \right) \otimes }\\ {\left. {\left( {gx - ghx} \right) \otimes {g^2}x} \right) = \frac{1}{2}\left( {{g^2} + g + h - gh} \right){x^3} = }\\ {{x^5} = x = T\left( x \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{\rm{id}} * T * {\rm{id}}\left( x \right) = m\left( {{\rm{id}} \otimes T \otimes {\rm{id}}} \right)\left( {\left( {{g^2}x + hx} \right) \otimes } \right.}\\ {\left( {{g^2}x + hx} \right) \otimes {g^2}x + \left( {{g^2}x + hx} \right) \otimes \left( {{g^2}x - hx} \right) \otimes }\\ {gx + \left( {{g^2}x - hx} \right) \otimes \left( {gx + ghx} \right) \otimes gx + }\\ {\left. {\left( {{g^2}x - hx} \right) \otimes \left( {gx - ghx} \right) \otimes {g^2}x} \right) = }\\ {\frac{1}{2}\left( {{g^2} + g + h - gh} \right){x^3} = }\\ {{x^5} = x = {\rm{id}}\left( x \right)} \end{array} $$

    另一方面,有

    $$ \begin{array}{l} {\rm{id}} * T\left( g \right) = {g^2} = T * {\rm{id}}\left( g \right)\\ {\rm{id}} * T\left( h \right) = {h^2} = T * {\rm{id}}\left( h \right) \end{array} $$
    $$ T * {\rm{id}}\left( x \right) = \frac{1}{2}x\left( {{g^2} + g + h - gh} \right)x = {x^4} = {g^2} $$
    $$ \begin{array}{*{20}{c}} {{\rm{id}} * T\left( x \right) = \frac{1}{2}\left( {{x^2} + {x^2}g + h{x^2} - h{x^2}g} \right) = }\\ {\frac{1}{2}x\left( {{g^2} + g + h - gh} \right)x = {x^4} = {g^2}} \end{array} $$

    于是对任意的a∈$ {{\tilde{H}}_{8}}$,可得id*T(a)和T*id(a)均是$ {{\tilde{H}}_{8}}$的中心中的元素.如果ab∈$ {{\tilde{H}}_{8}}$且

    $$ \begin{array}{*{20}{c}} {T * {\rm{id}} * T\left( a \right) = T\left( a \right),T * {\rm{id}} * T\left( b \right) = T\left( {\rm{b}} \right)}\\ {{\rm{id}} * T * {\rm{id}}\left( a \right) = a,{\rm{id}} * T * {\rm{id}}\left( {\rm{b}} \right) = b} \end{array} $$

    那么有

    $$ \begin{array}{*{20}{c}} {T * {\rm{id}} * T\left( {ab} \right) = T\left( {ab} \right)}\\ {{\rm{id}} * T * {\rm{id}}\left( {a{\rm{b}}} \right) = ab} \end{array} $$

    从而T可扩充成$ {{\tilde{H}}_{8}}$上的弱对极.

    容易证明g2和1-g2是$ {{\tilde{H}}_{8}}$的一对正交中心幂等元,令W2=$ {{\tilde{H}}_{8}}$(1-g2),那么有下面的命题.

    命题2  作为代数$ {{\tilde{H}}_{8}}$可分解成2个理想的直和

    $$ {{\tilde H}_8} = {W_1} \oplus {W_2} $$

    W1同构于H8W2同构于平凡子代数ℂ.

    证明  因为g2和1-g2是$ {{\tilde{H}}_{8}}$的一对正交中心幂等元,所以

    $$ {{\tilde H}_8} = {{\tilde H}_8}{g^2} \oplus {{\tilde H}_8}\left( {1 - {g^2}} \right) = {W_1} \oplus {W_2} $$

    定义φ:W1H8

    $$ \varphi \left( {{g^2}} \right) = 1,\varphi \left( {x{g^2}} \right) = c,\varphi \left( {{g^3}} \right) = s,\varphi \left( {{h^3}} \right) = t $$

    容易验证φ是一个同构.

    由于x=hxg(或x=gxh),因此xg2=hxgg2=hxg=x(或xg2=gxhg2=gxh=x),从而x(1-g2) =0.令ψ:W2→ℂ为

    $$ \psi \left( {1 - {g^2}} \right) = 1 $$

    验证得W2≅ℂ.

    易知$ {{\tilde{H}}_{8}}$是半单的,它有一组基为

    $$ \left\{ {1,g,h,x,{g^2},gh,xg,gx,xgh} \right\} $$

    引理3  弱Hopf代数$ {{\tilde{H}}_{8}}$有5个不同构的一维不可约模Sm(m∈ℤ4)和S4以及1个二维的不可约模S,它们的$ {{\tilde{H}}_{8}}$-模结构为

    $$ \begin{array}{*{20}{c}} {{S_m}:g \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {h \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {x \cdot {v^{\left( m \right)}} = {{\rm{i}}^m}{v^{\left( m \right)}},{v^{\left( m \right)}} \in {S_m}} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{S_4}:g \cdot {v^{\left( 4 \right)}} = 0,h \cdot {v^{\left( 4 \right)}} = 0}\\ {x \cdot {v^{\left( 4 \right)}} = 0,{v^{\left( 4 \right)}} \in {S_4}} \end{array} $$
    $$ \begin{array}{*{20}{c}} {S:g \cdot {v_j} = {{\left( { - 1} \right)}^j}{v_j},h \cdot {v_j} = {{\left( { - 1} \right)}^{j + 1}}{v_j}}\\ {x \cdot {v_j} = {v_{3 - j}},{v_j} \in S,j = 1,2} \end{array} $$

    证明  由命题2和引理1立得.

    命题3  作为$ {{\tilde{H}}_{8}}$-模,有下面结论:

    1) 如果m+m′(m, m′∈ℤ4)为奇数,那么SmSmSm+m′(mod4);如果m+m′为偶数,那么SmSmSmm′(mod4).

    2) $S\otimes {{S}_{m}}\cong {{S}_{m}}\otimes S\cong S, S\otimes S\cong \underset{m}{\mathop{\oplus }}\, {{S}_{m}} $.

    3) S4SmSmS4S4S4S4S4SSS4S4S4.

    证明   1) 和2) 见引理2的证明.

    3) 假设{v(m)v(4)}和{v(4)v(m)}分别是SmS4S4Sm的一组基,其中v(m)Smv(4)S4,那么SmS4S4Sm作为$ {{\tilde{H}}_{8}}$-模有

    $$ \begin{array}{*{20}{c}} {g \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( 4 \right)}}} \right) = 0}\\ {h \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( 4 \right)}}} \right) = 0}\\ {x \cdot \left( {{v^{\left( m \right)}} \otimes {v^{\left( 4 \right)}}} \right) = 0} \end{array} $$

    而且

    $$ \begin{array}{*{20}{c}} {g \cdot \left( {{v^{\left( 4 \right)}} \otimes {v^{\left( m \right)}}} \right) = 0}\\ {h \cdot \left( {{v^{\left( 4 \right)}} \otimes {v^{\left( m \right)}}} \right) = 0}\\ {x \cdot \left( {{v^{\left( 4 \right)}} \otimes {v^{\left( m \right)}}} \right) = 0} \end{array} $$

    因此S4SmSmS4S4,同理得S4S4S4.

    假设{vjv(4)}和{v(4)vj}分别SS4S4S的一组基,其中vjSj=1, 2. v(4)S4,那么SS4S4S作为$ {{\tilde{H}}_{8}}$-模有

    $$ \begin{array}{*{20}{c}} {g \cdot \left( {{v_j} \otimes {v^{\left( 4 \right)}}} \right) = 0}\\ {h \cdot \left( {{v_j} \otimes {v^{\left( 4 \right)}}} \right) = 0}\\ {x \cdot \left( {{v_j} \otimes {v^{\left( 4 \right)}}} \right) = 0} \end{array} $$

    而且

    $$ \begin{array}{*{20}{c}} {g \cdot \left( {{v^{\left( 4 \right)}} \otimes {v_j}} \right) = 0}\\ {h \cdot \left( {{v^{\left( 4 \right)}} \otimes {v_j}} \right) = 0}\\ {x \cdot \left( {{v^{\left( 4 \right)}} \otimes {v_j}} \right) = 0} \end{array} $$

    因此S4SSS4S4S4.

    由命题3可知弱Hopf代数$ {{\tilde{H}}_{8}}$的Green环r($ {{\tilde{H}}_{8}}$)是一个交换环.

    定理1  r($ {{\tilde{H}}_{8}}$)同构于ℤ[y1, y2, y3, y4]/I,其中I是多项式环ℤ[y1, y2, y3, y4]的理想,它由关系式y12-1、y22-1、y3y1y3y3y2y3、1+y1+y2 +y1y2y32y42y4y3y4-2y4生成.

    证明  令x1=[S1],x2=[S2],x3=[S],x4=[S4],由命题3知r($ {{\tilde{H}}_{8}}$)是由x1x2x3x4生成的含有单位元[S0]的环,因此存在一个环满同态

    $$ \phi :\mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4}} \right] \to r\left( {{{\tilde H}_8}} \right) $$

    使得ϕ(yi)=xi(i=1, 2, 3, 4).另一方面,由命题3知

    $$ \begin{array}{*{20}{c}} {x_1^2 = x_2^2 = 1,{x_3}{x_1} = {x_3}{x_2} = {x_3},x_4^2 = {x_4}}\\ {{x_3}{x_4} = 2{x_4},1 + {x_1} + {x_2} + {x_1}{x_2} = x_3^2} \end{array} $$

    所以

    $$ \begin{array}{*{20}{c}} {\phi \left( {y_1^2 - 1} \right) = \phi \left( {y_2^2 - 1} \right) = 0}\\ {\phi \left( {{y_3}{y_1} - {y_3}} \right) = \phi \left( {{y_3}{y_2} - {y_3}} \right) = 0}\\ {\phi \left( {y_4^2 - {y_4}} \right) = 0,\phi \left( {{y_3}{y_4} - 2{y_4}} \right) = 0}\\ {\phi \left( {1 + {y_1} + {y_2} + {y_1}{y_2} - y_3^2} \right) = 0} \end{array} $$

    因此ϕ(I)=0,从而ϕ诱导了一个满同态

    $$ \bar \phi :\mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4}} \right]/I \to r\left( {{{\tilde H}_8}} \right) $$

    使得对任意的v∈ℤ[y1, y2, y3, y4],有

    $$ \bar \phi \left( {\bar v} \right) = \phi \left( v \right) $$

    式中:$ \bar{v}=\pi \left( v \right), \text{ }\pi :\mathbb{Z}[{{y}_{1}}, {{y}_{2}}, {{y}_{3}}, {{y}_{4}}\left] \to \mathbb{Z} \right[{{y}_{1}}, {{y}_{2}}, {{y}_{3}}, {{y}_{4}}]/I$.

    易得r($ {{\tilde{H}}_{8}}$)是一个秩为6的自由ℤ-模,它的一组基为{1, x1, x2, x3, x4, x1x2},因此定义一个ℤ-模同态

    $$ \psi :r\left( {{{\tilde H}_8}} \right) \to \mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4}} \right]/I $$

    $$ \begin{array}{*{20}{c}} {\psi \left( {{x_i}} \right) = {{\bar y}_i}\left( {i = 1,2,3,4} \right)}\\ {\psi \left( 1 \right) = \bar 1,\psi \left( {{x_1}{x_2}} \right) = {{\bar y}_1}{{\bar y}_2} = {{\bar y}_1}{{\bar y}_2}} \end{array} $$

    显然ℤ[y1, y2, y3, y4]/I作为ℤ-模是由{1-, y1, y2, y3, y4, y1y2}张成的,由于

    $$ \begin{array}{*{20}{c}} {\psi \bar \phi \left( {\bar 1} \right) = \psi \phi \left( 1 \right) = \bar 1}\\ {\psi \bar \phi \left( {{{\bar y}_i}} \right) = \psi \phi \left( {{y_i}} \right) = \psi \left( {{x_i}} \right) = {{\bar y}_i}\left( {i = 1,2,3,4} \right)}\\ {\psi \bar \phi \left( {{{\bar y}_1}{{\bar y}_2}} \right) = \psi \phi \left( {{y_1}{y_2}} \right) = \psi \left( {{x_1}{x_2}} \right) = {{\bar y}_1}{{\bar y}_2}} \end{array} $$

    因此ψϕ=id,ϕ是单射,所以ϕ是一个同构.

    本节首先把H8扩张成一个Δ-结合代数$ {\hat H_8} $,然后找到它的Green环r($ {\hat H_8} $)的含单位元的扩环r*($ {\hat H_8} $),确定r*($ {\hat H_8} $)的生成元和生成关系.

    设$ {\hat H_8} $由efy生成,且满足

    $$ \left\{ \begin{array}{l} {e^3} = e,{f^3} = f,{e^2} = {f^2}\\ ef = fe,ey = yf.ye = fy\\ {y^2} = \frac{1}{2}\left( {{e^2} + e + f - ef} \right) \end{array} \right. $$ (2)

    在生成元上定义Δ: $ {\hat H_8} $→ $ {\hat H_8} $⊗ $ {\hat H_8} $为

    $$ \begin{array}{*{20}{c}} {\Delta \left( e \right) = e \otimes e,\Delta \left( f \right) = f \otimes f}\\ {\Delta \left( y \right) = \frac{1}{2}\left( {{e^2} \otimes {e^2} + {e^2} \otimes e + f \otimes {e^2} - f \otimes e} \right)\left( {y \otimes y} \right)} \end{array} $$

    命题4  映射Δ可自然地扩充到$ {\hat H_8} $上,使之是一个Δ-结合代数.

    证明  首先证明Δ是代数同态,易知

    $$ \begin{array}{*{20}{c}} {{{\left( {\Delta \left( e \right)} \right)}^3} = \Delta \left( e \right),{{\left( {\Delta \left( f \right)} \right)}^3} = \Delta \left( f \right)}\\ {{{\left( {\Delta \left( e \right)} \right)}^2} = {{\left( {\Delta \left( f \right)} \right)}^2},\Delta \left( e \right)\Delta \left( f \right) = \Delta \left( f \right)\Delta \left( e \right)} \end{array} $$

    由于

    $$ \begin{array}{*{20}{c}} {\Delta \left( f \right)\Delta \left( y \right) = \frac{1}{2}\left( {{e^2} \otimes {e^2} + {e^2} \otimes e + } \right.}\\ {\left. {f \otimes {e^2} - f \otimes e} \right)\left( {fy \otimes fy} \right) = \frac{1}{2}\left( {{e^2} \otimes {e^2} + {e^2} \otimes e + } \right.}\\ {\left. {f \otimes {e^2} - f \otimes e} \right)\left( {y \otimes y} \right)\left( {e \otimes e} \right)\Delta \left( y \right)\Delta \left( e \right)} \end{array} $$

    同理可得

    $$ \begin{array}{*{20}{c}} {\Delta \left( y \right)\Delta \left( f \right) = \Delta \left( e \right)\Delta \left( y \right)}\\ {{{\left( {\Delta \left( y \right)} \right)}^2} = \frac{1}{2}\left( {{{\left( {\Delta \left( e \right)} \right)}^2} + \Delta \left( e \right) + } \right.}\\ {\left. {\Delta \left( f \right) - \Delta \left( e \right)\Delta \left( f \right)} \right)} \end{array} $$

    因此Δ保持关系式(2),Δ扩展为从$ {\hat H_8} $到$ {\hat H_8} $⊗ $ {\hat H_8} $的代数同态.另一方面易知对任意Y=efy

    $$ \left( {\Delta \otimes {\rm{id}}} \right)\Delta \left( Y \right) = \left( {{\rm{id}} \otimes \Delta } \right)\Delta \left( Y \right) $$

    所以$ {\hat H_8} $是Δ-结合代数.

    注:$ {\hat H_8} $不是弱Hopf代数.实际上,若$ {\hat H_8} $是弱Hopf代数,则可定义ε: $ {\hat H_8} $→ℂ是余单位,此时容易得到ε(1)=ε(e)=ε(f)=ε(y)=1且ε为代数同态,然而与(ε⊗id)Δ(y)=(id⊗ε)Δ(y)=e2y≠id(y)矛盾.

    容易证明e2和1-e2是$ {\hat H_8} $的一对正交中心幂等元,令W3= $ {\hat H_8} $e2W4= $ {\hat H_8} $(1-e2),那么有如下命题.

    命题5  作为代数$ {\hat H_8} $可分解为2个理想的直和

    $$ {{\hat H}_8} = {W_3} \oplus {W_4} $$

    W3同构于H8W4同构于由单个元素z生成的2-维代数A,满足z2=0.

    证明  因为e2和1-e2是$ {\hat H_8} $的一对正交中心幂等元,所以

    $$ {{\hat H}_8} = {{\hat H}_8}{e^2} \oplus {{\hat H}_8}\left( {1 - {e^2}} \right) = {W_3} \oplus {W_4} $$

    定义φ:W3H8

    $$ \varphi \left( {{e^2}} \right) = 1,\varphi \left( {y{e^2}} \right) = c,\varphi \left( {{e^3}} \right) = s,\varphi \left( {{f^3}} \right) = t $$

    容易验证φ是一个同构.

    由于y(1-e2)≠0,但是

    $$ \begin{array}{*{20}{c}} {{{\left( {y\left( {1 - {e^2}} \right)} \right)}^2} = {y^2}\left( {1 - {e^2}} \right) = }\\ {\frac{1}{2}\left( {{e^2} + e + f - ef} \right)\left( {1 - {e^2}} \right) = 0} \end{array} $$

    因此令ψ:W4A

    $$ \psi \left( {1 - {e^2}} \right) = 1,\psi \left( {1 - {e^2}} \right)y = z $$

    易得W4A.

    $ {\hat H_8} $(作为代数)同构于H8A是一个十维代数,它有一组基为{1, e, f, y, e2, ef, ye, ey, e2y, yef}.

    引理4  Δ-结合代数$ {\hat H_8} $有5个不同构的一维不可约模Sm(m∈ℤ4)和S4以及2个不同构的二维不可分解模SS′,它们的$ {\hat H_8} $-模结构为

    $$ \begin{array}{*{20}{c}} {{S_m}:e \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {f \cdot {v^{\left( m \right)}} = {{\left( { - 1} \right)}^m}{v^{\left( m \right)}}}\\ {y \cdot {v^{\left( m \right)}} = {{\rm{i}}^m}{v^{\left( m \right)}},{v^{\left( m \right)}} \in {S_m}} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{S_4}:e \cdot {v^{\left( 4 \right)}} = 0,f \cdot {v^{\left( 4 \right)}} = 0}\\ {y \cdot {v^{\left( 4 \right)}} = 0,{v^{\left( 4 \right)}} \in {S_4}} \end{array} $$
    $$ \begin{array}{*{20}{c}} {S:e \cdot {v_j} = {{\left( { - 1} \right)}^j}{v_j}}\\ {f \cdot {v_j} = {{\left( { - 1} \right)}^{j + 1}}{v_j}}\\ {y \cdot {v_j} = {v_{3 - j}},{v_j} \in S,j = 1,2} \end{array} $$
    $$ \begin{array}{*{20}{c}} {S':e \cdot {v_k} = 0,f \cdot {v_k} = 0}\\ {y \cdot {v_k} = \left( {2 - k} \right){v_{3 - k}}}\\ {{v_k} \in S',k = 1,2} \end{array} $$

    证明  由命题5和引理1立得.

    命题6   作为$ {\hat H_8} $-模,有下面结论:

    1) 如果m+m′(m, m′∈ℤ4)为奇数,那么SmSmSm+m′(mod4);如果m+m′为偶数,那么SmSmSmm′(mod4).

    2) $ S\otimes {{S}_{m}}\cong {{S}_{m}}\otimes S\cong S, S\otimes S\cong \underset{m}{\mathop{\oplus }}\, {{S}_{m}} $.

    3) S4SmSmS4S4S4S4S4SSS4S4S4.

    4) SmS′≅S′⊗SmS′⊗S4S4S′ ≅S4S4.

    5) SS′≅S′⊗SS′⊗S′≅S4S4S4S4.

    证明  1)、2) 和3) 见命题3的证明.

    4) 假设{v(m)vk}和{vkv(m)}分别是SmS′和S′⊗Sm的一组基,其中v(m)SmvkS′,k=1, 2.那么SmS′和S′⊗Sm作为$ {\hat H_8} $-模有

    $$ \begin{array}{*{20}{c}} {e \cdot \left( {{v^{\left( m \right)}} \otimes {v_k}} \right) = 0}\\ {f \cdot \left( {{v^{\left( m \right)}} \otimes {v_k}} \right) = 0}\\ {y \cdot \left( {{v^{\left( m \right)}} \otimes {v_k}} \right) = 0} \end{array} $$

    而且

    $$ \begin{array}{*{20}{c}} {e \cdot \left( {{v_k} \otimes {v^{\left( m \right)}}} \right) = 0,f \cdot \left( {{v_k} \otimes {v^{\left( m \right)}}} \right) = 0}\\ {y \cdot \left( {{v_k} \otimes {v^{\left( m \right)}}} \right) = 0} \end{array} $$

    因此SmS′≅S′⊗SmS4S4,容易证明S′⊗S4S4S′≅S4S4.

    5) 假设{vjvk}和{vkvj}分别SS′和S′⊗S的一组基,其中vjSvkS′,j, k=1, 2.那么SS′和S′⊗S作为$ {\hat H_8} $-模有

    $$ \begin{array}{*{20}{c}} {e \cdot \left( {{v_j} \otimes {v_k}} \right) = 0}\\ {f \cdot \left( {{v_j} \otimes {v_k}} \right) = 0}\\ {y \cdot \left( {{v_j} \otimes {v_k}} \right) = 0} \end{array} $$

    而且

    $$ \begin{array}{*{20}{c}} {e \cdot \left( {{v_k} \otimes {v_j}} \right) = 0,f \cdot \left( {{v_k} \otimes {v_j}} \right) = 0}\\ {y \cdot \left( {{v_k} \otimes {v_j}} \right) = 0} \end{array} $$

    因此SS′≅S′⊗SS4S4S4S4,容易证明

    $$ S' \otimes S' \cong {S_{}} \oplus {S_4} \oplus {S_4} \oplus {S_4} $$

    由命题6知Δ-结合代数$ {\hat H_8} $的Green环r($ {\hat H_8} $)是一个不含单位元的交换环.令

    $$ {r^ * }\left( {{{\hat H}_8}} \right) = \left\{ {\left( {k,\alpha } \right)\left| {k \in ,\alpha \in r\left( {{{\hat H}_8}} \right)} \right.} \right\} $$

    任取(k, α)、(l, β)∈r*($ {\hat H_8} $),规定

    $$ \left( {k,\alpha } \right) = \left( {l,\beta } \right) $$

    当且仅当k=lα=β.

    定义加法和乘法为

    $$ \begin{array}{*{20}{c}} {\left( {k,\alpha } \right) + \left( {l,\beta } \right) = \left( {k + l,\alpha + \beta } \right)}\\ {\left( {k,\alpha } \right)\left( {l,\beta } \right) = \left( {kl,l\alpha + k\beta + \alpha \beta } \right)} \end{array} $$

    r*($ {\hat H_8} $)是含有单位元(1, 0) 的环,且

    $$ r\left( {{{\hat H}_8}} \right) \cong \left\{ {\left( {0,\alpha } \right)\left| {\alpha \in r\left( {{{\hat H}_8}} \right)} \right.} \right\} \subseteq {r^ * }\left( {{{\hat H}_8}} \right) $$

    定理2  r*($ {\hat H_8} $)同构于ℤ[y1, y2, y3, y4, y5]/I,其中I是多项式环ℤ[y1, y2, y3, y4, y5]的理想,它由关系式y12y22y13y1y23y2y3y1y3y3y2y3y1y5-2y4y2y5-2y4y12+y1 +y2+y1y2y32y3y5-4y4y52-4y4生成.

    证明  令x1=[S1],x2=[S2],x3=[S],x4=[S4],x5=[S′],由命题6知r($ {\hat H_8} $)中的任意元素形式为$ \sum\limits_{{{k}_{1}}+\cdots +{{k}_{5}}>0}{{{a}_{{{k}_{1}}\cdots {{k}_{5}}}}x_{1}^{{{k}_{1}}}x_{2}^{{{k}_{2}}}\cdots x_{5}^{{{k}_{5}}}} $,其中ak1k2k5, k1, …, k5∈ℤ,则

    $$ \begin{array}{*{20}{c}} {{r^ * }\left( {{{\hat H}_8}} \right) = \left\{ {\left( {k,\sum\limits_{{k_1} + \cdots + {k_5} > 0} {{a_{{k_1} \cdots {k_5}}}x_1^{{k_1}}x_2^{{k_2}} \cdots x_5^{{k_5}}} } \right)\left| k \right.,} \right.} \\ {\left. {{a_{{k_1}{k_2} \cdots {k_5}}},{k_1}, \cdots ,{k_5} \in \mathbb{Z}} \right\}} \end{array} $$

    定义

    $$ \phi :\mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4},{y_5}} \right] \to {r^ * }\left( {{{\hat H}_8}} \right) $$

    ϕ(1)=(1, 0),ϕ(yi)=(0, xi)(i=1, 2, 3, 4, 5),则ϕ可以自然扩充成环同态且是满的.实际上,任意的v∈ℤ[y1, y2, y3, y4, y5]可表示为

    $$ v = k{1_{\mathbb{Z}\left[ {{y_1}, \cdots ,{y_5}} \right]}} + \sum\limits_{{i_1} + \cdots + {i_5} > 0} {{a_{{i_1} \cdots {i_5}}}y_1^{{i_1}}y_2^{{i_2}} \cdots y_5^{{i_5}}} $$

    其中kai1i2i5,以及i1, …, i5∈ℤ,那么

    $$\phi \left( v \right) = \left( {k,\sum\limits_{{k_1} + \cdots + {k_5} > 0} {{a_{{k_1} \cdots {k_5}}}x_1^{{k_1}}x_2^{{k_2}} \cdots x_5^{{k_5}}} } \right) $$

    另一方面,由命题6知

    $$ \begin{array}{*{20}{c}} {x_1^2 = x_2^2,x_1^3 = {x_1},x_2^3 = {x_2},{x_3}{x_1} = {x_3}{x_2} = {x_3}}\\ {x_1^2 + {x_1} + {x_2} + {x_1}{x_2} = x_3^2}\\ {{x_1}{x_5} = {x_2}{x_5} = 2{x_4},{x_3}{x_5} = x_5^2 = 4{x_4}} \end{array} $$

    可得

    $$ \begin{array}{*{20}{c}} {\left( {0,x_1^2} \right) = \left( {0,x_2^2} \right),\left( {0,x_1^3} \right) = \left( {0,{x_1}} \right)}\\ {\left( {0,x_2^3} \right) = \left( {0,{x_2}} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\left( {0,{x_3}{x_1}} \right) = \left( {0,{x_3}{x_2}} \right) = \left( {0,{x_3}} \right)}\\ {\left( {0,x_1^2 + {x_1} + {x_2} + {x_1}{x_2}} \right) = \left( {0,x_3^2} \right)}\\ {\left( {0,{x_1}{x_5}} \right) = \left( {0,{x_2}{x_5}} \right) = \left( {0,2{x_4}} \right)}\\ {\left( {0,{x_3}{x_5}} \right) = \left( {0,x_5^2} \right) = \left( {0,4{x_4}} \right)} \end{array} $$

    所以

    $$ \begin{array}{*{20}{c}} {\phi \left( {y_1^2 - y_2^2} \right) = \left( {0,0} \right),\phi \left( {y_1^3 - {y_1}} \right) = \left( {0,0} \right)}\\ {\phi \left( {y_2^3 - {y_2}} \right) = \left( {0,0} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\phi \left( {{y_3}{y_1} - {y_3}} \right) = \phi \left( {{y_3}{y_2} - {y_3}} \right) = \left( {0,0} \right)}\\ {\phi \left( {y_1^2 + {y_1} + {y_2} + {y_1}{y_2} - y_3^2} \right) = \left( {0,0} \right)}\\ {\phi \left( {{y_5}{y_1} - 2{y_4}} \right) = \phi \left( {{y_5}{y_2} - 2{y_4}} \right) = \left( {0,0} \right)}\\ {\phi \left( {{y_3}{y_5} - 4{y_4}} \right) = \left( {0,0} \right),\phi \left( {y_5^2 - 4{y_4}} \right) = \left( {0,0} \right)} \end{array} $$

    因此ϕ(I)=(0, 0),从而ϕ诱导了一个满同态

    $$ \bar \phi :\mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4},{y_5}} \right]/I \to {r^ * }\left( {{{\hat H}_8}} \right) $$

    使得对任意的v∈ℤ[y1, y2, y3, y4, y5],有

    $$ \bar \phi \left( {\bar v} \right) = \phi \left( v \right) $$

    式中v=π(v),π:ℤ[y1, y2, y3, y4, y5]→ ℤ[y1, y2, y3, y4, y5]/I.

    易得r*($ {\hat H_8} $)是一个秩为8的自由ℤ-模,它的一组基为

    $$ \begin{array}{*{20}{c}} {\left\{ {\left( {1,0} \right),\left( {0,{x_1}} \right),\left( {0,{x_2}} \right),\left( {0,{x_3}} \right),\left( {0,{x_4}} \right),} \right.}\\ {\left. {\left( {0,{x_5}} \right),\left( {0,x_1^2} \right),\left( {0,{x_1}{x_2}} \right)} \right\}} \end{array} $$

    因此定义一个ℤ-模同态

    $$ \psi :{r^ * }\left( {{{\hat H}_8}} \right) \to \mathbb{Z}\left[ {{y_1},{y_2},{y_3},{y_4},{y_5}} \right]/I $$

    $$ \begin{array}{*{20}{c}} {\psi \left( {\left( {1,0} \right)} \right) = \bar 1,\psi \left( {\left( {0,{x_i}} \right)} \right) = {{\bar y}_i}\left( {i = 1,2,3,4,5} \right)}\\ {\psi \left( {\left( {0,x_1^2} \right)} \right) = \bar y_1^2,\psi \left( {\left( {0,{x_1}{x_2}} \right)} \right) = {{\bar y}_1}{{\bar y}_2} = {{\bar y}_1}{{\bar y}_2}} \end{array} $$

    显然ℤ[y1, y2, y3, y4, y5]/I作为ℤ-模是由$ \{\bar{1}, {{\bar{y}}_{1}}, {{\bar{y}}_{2}}, {{\bar{y}}_{3}}, {{\bar{y}}_{4}}, {{\bar{y}}_{5}}, y_{_{1}}^{^{2}}, {{\bar{y}}_{1}}{{\bar{y}}_{2}}\} $张成的,由于

    $$ \begin{array}{*{20}{c}} {\psi \bar \phi \left( {\bar 1} \right) = \psi \phi \left( 1 \right) = \psi \left( {\left( {1,0} \right)} \right) = \bar 1}\\ {\psi \bar \phi \left( {{{\bar y}_i}} \right) = \psi \phi \left( {{y_i}} \right) = \psi \left( {\left( {0,{x_i}} \right)} \right) = }\\ {{{\bar y}_i}\left( {i = 1,2,3,4,5} \right)}\\ {\psi \bar \phi \left( {\bar y_1^2} \right) = \psi \phi \left( {y_1^2} \right) = \psi \left( {\left( {0,x_1^2} \right)} \right) = \bar y_1^2}\\ {\psi \bar \phi \left( {{{\bar y}_1}{{\bar y}_2}} \right) = \psi \phi \left( {{y_1}{y_2}} \right) = \psi \left( {\left( {0,{x_1}{x_2}} \right)} \right) = {{\bar y}_1}{{\bar y}_2}} \end{array} $$

    因此ψϕ=id,ϕ是单射,所以ϕ是一个同构.

    1) 弱Hopf代数$ {{\tilde{H}}_{8}}$ $的Green环r($ {{\tilde{H}}_{8}}$)是一个交换环,且同构于多项式环ℤ[y1, y2, y3, y4]的商环, 见定理1.

    2) Δ-结合代数$ {{\hat{H}}_{8}}$的Green环r($ {\hat H_8} $)是一个不含单位元的交换环.通过环扩充得到r($ {\hat H_8} $)的扩环r*($ {\hat H_8} $),r*($ {\hat H_8} $)是含有单位元的交换环,其同构于多项式环ℤ[y1, y2, y3, y4, y5]的商环, 见定理2.

  • [1]

    LI F. Weak Hopf algebras and some new solutions of Yang-Baxter equation [J]. J Algebra, 1998, 208(1): 72-100. doi: 10.1006/jabr.1998.7491

    [2]

    LI F, DUPLIJ S. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation [J]. Comm Math Phys, 2002, 225(1): 192-217. http://www.academia.edu/8985054/Weak_Hopf_Algebras_and_Singular_Solutions_of_Quantum_Yang_Baxter_Equation

    [3]

    YANG S L. Weak Hopf algebras corresponding to Cartan matrices [J]. J Math Phys, 2005, 46(043502): 1-18. https://www.researchgate.net/publication/2119363_Weak_Hopf_algebras_corresponding_to_Cartan_matrices

    [4]

    CHENG D M, LI F. The structure of weak Hopf algebras corresponding to Uq(sl2)[J]. Comm in Algebra, 2009, 37(3): 729-742. doi: 10.1080/00927870802243499

    [5] 程东明.对应于Uq(sln)的弱Hopf代数的分类[J].数学物理学报, 2012, 32(3): 662-669. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxwx201203018&dbname=CJFD&dbcode=CJFQ

    CHENG D M. Classification of weak Hopf algebras corresponding to Uq(sln) [J]. Acta Mathematica Scientia, 2012, 32(3): 662-669. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxwx201203018&dbname=CJFD&dbcode=CJFQ

    [6]

    CHENG D M. The structure of weak quantum groups corresponding to Sweedler algebra [J]. JP Journal of Algebra, Number Theory and Appl, 2010, 16(2): 89-99. http://www.ams.org/mathscinet-getitem?mr=2662950

    [7]

    CHEN H X, OYSTAEYEN F V, ZHANG Y H. The Green rings of Taft algebras [J]. Proc Amer Math Soc, 2014, 142(3): 765-775. https://www.researchgate.net/publication/51952661_The_Green_Rings_of_Taft_algebras

    [8]

    LI L B, ZHANG Y H. The Green rings of the genera-lized Taft Hopf algebras [J]. Con Math, 2013, 585: 275-288. doi: 10.1090/conm/585

    [9]

    SWEEDLER M E. Hopf algebras [M]. New York: Benjamin, 1969: 3-27.

    [10]

    MASUOKA A. Semisimple Hopf algebras of dimension 6, 8[J]. Isreal J Math, 1995, 92(1): 361-373. https://www.researchgate.net/publication/225198614_Semisimple_Hopf_algebras_of_dimension_6_8

  • 期刊类型引用(1)

    1. 杨士林,宋嫒月. 一类32维半单Hopf代数的拟三角结构. 北京工业大学学报. 2019(08): 815-820 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  196
  • HTML全文浏览量:  5
  • PDF下载量:  41
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-07-05
  • 网络出版日期:  2022-08-03
  • 发布日期:  2017-08-09
  • 刊出日期:  2017-08-14

目录

/

返回文章
返回