Exact Travelling Wave Solutions of Several Kinds of Nonlinear Equations
-
摘要: 利用秩分析法以及一种特殊的假设,对Newell-Withehead方程、广义Kuramoto—Sivashinski方程、广义Burgers-Fisher方程、Convechve-Fisher方程的行波解进行了讨论,得到了上述方程具有双曲正切及双曲正切的幂次形式的解析解.Abstract: By using rank analysis technique and a specical hypothesis, the traveling wave solutions to Newell-Winthehead equation, generalized Kuramoto-Sivashinski equation, generalized Burgers-Fisher equation and convective Fisher equation are discussed. The explicit solutions of the above mentioned equations with the form of hyperbolic functions sech and tanh are obtained.
-
Keywords:
- nonlinear equation /
- travelling wave solution /
- rank analysis method
-
-
[1] FENG X. Exploratory approach to explicit solution of nonlinear evlution equation[J]. Int J Theor Phys, 2000,39(1): 207-222.
[2] LIU C P, ZHOU R G, ZHOU M G. A simple method to construct the travelling wave solutions to nonlinearevolution equations[J]. Phys Lett A, 1998, 246: 113-116.
[3] ZHANG J F. Exact and explicit solitary wave solutions to some nonlinear equations[J]. Int J of Theor Phys,1996, 35(8): 1793-1798.
[4] SAONBORN O, DESAI R C, STAUFFER D. Nolinear bias and the convective Fisher equation[J]. J Phys: AMath Gen, 1994, 27: L251-255.
[5] CALOGERO F. The evolution partial differential equation ut=uxxx+3(uxxu2 +3u2xu) + 3uxu4[J]. J MathPhys, 1987, 28(3): 538-555.
[6] DANIEL M, SAHADEVON R. On the weak painleve property and linearization of the evolution equation u = uxxx+Mxxu2+ 3ux2u + (l/ 3)uxu4[J]. Phys Lett: A, 1988, 130(1): 19-21.
[7] YANG Z J. Travelling wave solutions to nonlinear evolution and wave equations[J]. J Physics: A, Math Gen,1994, 27: 2837-2855.
[8] LU B Q, XIU B Z, PANG Z L, et al. Exact travelling wave solution of one class of nonlinear diffusionequations[J]. Phys Lett: A, 1993, 175: 113-115.
计量
- 文章访问数: 16
- HTML全文浏览量: 1
- PDF下载量: 6