• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

几类非线性方程的精确行波解

胡建兰, 张汉林, 金焕

胡建兰, 张汉林, 金焕. 几类非线性方程的精确行波解[J]. 北京工业大学学报, 2002, 28(3): 317-319. DOI: 10.3969/j.issn.0254-0037.2002.03.016
引用本文: 胡建兰, 张汉林, 金焕. 几类非线性方程的精确行波解[J]. 北京工业大学学报, 2002, 28(3): 317-319. DOI: 10.3969/j.issn.0254-0037.2002.03.016
HU Jian-lan, ZHANG Han-lin, JIN Huan. Exact Travelling Wave Solutions of Several Kinds of Nonlinear Equations[J]. Journal of Beijing University of Technology, 2002, 28(3): 317-319. DOI: 10.3969/j.issn.0254-0037.2002.03.016
Citation: HU Jian-lan, ZHANG Han-lin, JIN Huan. Exact Travelling Wave Solutions of Several Kinds of Nonlinear Equations[J]. Journal of Beijing University of Technology, 2002, 28(3): 317-319. DOI: 10.3969/j.issn.0254-0037.2002.03.016

几类非线性方程的精确行波解

详细信息
    作者简介:

    胡建兰(1965-),女,讲师.

  • 中图分类号: O175;O241.7

Exact Travelling Wave Solutions of Several Kinds of Nonlinear Equations

  • 摘要: 利用秩分析法以及一种特殊的假设,对Newell-Withehead方程、广义Kuramoto—Sivashinski方程、广义Burgers-Fisher方程、Convechve-Fisher方程的行波解进行了讨论,得到了上述方程具有双曲正切及双曲正切的幂次形式的解析解.
    Abstract: By using rank analysis technique and a specical hypothesis, the traveling wave solutions to Newell-Winthehead equation, generalized Kuramoto-Sivashinski equation, generalized Burgers-Fisher equation and convective Fisher equation are discussed. The explicit solutions of the above mentioned equations with the form of hyperbolic functions sech and tanh are obtained.
  • [1]

    FENG X. Exploratory approach to explicit solution of nonlinear evlution equation[J]. Int J Theor Phys, 2000,39(1): 207-222.

    [2]

    LIU C P, ZHOU R G, ZHOU M G. A simple method to construct the travelling wave solutions to nonlinearevolution equations[J]. Phys Lett A, 1998, 246: 113-116.

    [3]

    ZHANG J F. Exact and explicit solitary wave solutions to some nonlinear equations[J]. Int J of Theor Phys,1996, 35(8): 1793-1798.

    [4]

    SAONBORN O, DESAI R C, STAUFFER D. Nolinear bias and the convective Fisher equation[J]. J Phys: AMath Gen, 1994, 27: L251-255.

    [5]

    CALOGERO F. The evolution partial differential equation ut=uxxx+3(uxxu2 +3u2xu) + 3uxu4[J]. J MathPhys, 1987, 28(3): 538-555.

    [6]

    DANIEL M, SAHADEVON R. On the weak painleve property and linearization of the evolution equation u = uxxx+Mxxu2+ 3ux2u + (l/ 3)uxu4[J]. Phys Lett: A, 1988, 130(1): 19-21.

    [7]

    YANG Z J. Travelling wave solutions to nonlinear evolution and wave equations[J]. J Physics: A, Math Gen,1994, 27: 2837-2855.

    [8]

    LU B Q, XIU B Z, PANG Z L, et al. Exact travelling wave solution of one class of nonlinear diffusionequations[J]. Phys Lett: A, 1993, 175: 113-115.

计量
  • 文章访问数:  16
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-10-24
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2022-11-10

目录

    /

    返回文章
    返回