刘希亮, 赵俊杰, 张羽民, 林绍福, 李建强, 梅强. 基于时空认知膨胀卷积网络与多源影响因素的PM2.5细粒度预测模型[J]. 北京工业大学学报, 2024, 50(3): 333-347. DOI: 10.11936/bjutxb2022060014
    引用本文: 刘希亮, 赵俊杰, 张羽民, 林绍福, 李建强, 梅强. 基于时空认知膨胀卷积网络与多源影响因素的PM2.5细粒度预测模型[J]. 北京工业大学学报, 2024, 50(3): 333-347. DOI: 10.11936/bjutxb2022060014
    LIU Xiliang, ZHAO Junjie, ZHANG Yumin, LIN Shaofu, LI Jianqiang, MEI Qiang. PM2.5 Fine-grained Air Quality Prediction Model Based on Spatial-Temporal Cognitive Dilated Convolution Network and Multi-source Influencing Factors[J]. Journal of Beijing University of Technology, 2024, 50(3): 333-347. DOI: 10.11936/bjutxb2022060014
    Citation: LIU Xiliang, ZHAO Junjie, ZHANG Yumin, LIN Shaofu, LI Jianqiang, MEI Qiang. PM2.5 Fine-grained Air Quality Prediction Model Based on Spatial-Temporal Cognitive Dilated Convolution Network and Multi-source Influencing Factors[J]. Journal of Beijing University of Technology, 2024, 50(3): 333-347. DOI: 10.11936/bjutxb2022060014

    基于时空认知膨胀卷积网络与多源影响因素的PM2.5细粒度预测模型

    PM2.5 Fine-grained Air Quality Prediction Model Based on Spatial-Temporal Cognitive Dilated Convolution Network and Multi-source Influencing Factors

    • 摘要: 为实现精确化、细粒度的PM2.5浓度预测,提出了基于时空认知膨胀卷积网络(spatial-temporal cognitive dilated convolution network,ST-C-DCN)的PM2.5浓度预测模型ST-C-DCN。该模型将时空因素、气象因素运用于PM2.5浓度预测,基于因果卷积网络提取时空特征,并采用时空注意力机制优化了时空特征的提取。基于海口市空气污染数据的实验测试表明:对于单个监测站,基线模型相比,ST-C-DCN的均方根误差(root mean square error,RMSE)平均下降24.7%,平均绝对误差(mean absolute error,MAE)平均下降9.93%,拟合优度(R-squared,R2)平均上升3.35%。对于全部监测站点的预测,ST-C-DCN在win-tie-loss(包括MSE、RMSE、MAE、R2)实验中,均获得了最多的获胜次数,分别为68,68、63和64。通过不同数据抽样条件下的Friedman检验,证明了ST-C-DCN对比基准有显著的性能提升。ST-C-DCN为细粒度PM2.5预测提供了一个具有潜力的方向。

       

      Abstract: To achieve accurate and fine-grained PM2.5 concentration prediction, this paper proposed a PM2.5 concentration prediction model based on spatial-temporal cognitive dilated convolution network (ST-C-DCN). The model applied spatial-temporal factors and meteorological factors to PM2.5 concentration prediction, extracted spatial-temporal features based on causal convolution network, and optimized the extraction of spatial-temporal features by using spatial-temporal attention mechanism. Experimental results based on Haikou air pollution data show that for a single monitoring station, compared with the baseline model, the RMSE of ST-C-DCN decreases by 24.7% on average, the MAE decreases by 9.93% on average, and the R2 increases by 3.35% on average. ST-C-DCN outperforms other models in terms of prediction accuracy for all monitoring stations, achieving the highest scores in win-tie-loss experiments (including MSE, RMSE, MAE, and R2), with values of 68, 63, and 64, respectively. The Friedman test conducted under different data sampling conditions confirms that ST-C-DCN exhibits significant performance improvement compared to the baseline model. In conclusion, ST-C-DCN provides a potential direction for fine-grained PM2.5 prediction.

       

    /

    返回文章
    返回