• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

基于基因表达谱的白血病分子预测模型研究

王金莲, 阮晓钢, 李晓明

王金莲, 阮晓钢, 李晓明. 基于基因表达谱的白血病分子预测模型研究[J]. 北京工业大学学报, 2009, 35(3): 301-308.
引用本文: 王金莲, 阮晓钢, 李晓明. 基于基因表达谱的白血病分子预测模型研究[J]. 北京工业大学学报, 2009, 35(3): 301-308.
WANG Jin-lian, RUAN Xiao-gang, LI Xiao-ming. Study on Leukemia Molecular Prediction Model with Gene Expression Profile[J]. Journal of Beijing University of Technology, 2009, 35(3): 301-308.
Citation: WANG Jin-lian, RUAN Xiao-gang, LI Xiao-ming. Study on Leukemia Molecular Prediction Model with Gene Expression Profile[J]. Journal of Beijing University of Technology, 2009, 35(3): 301-308.

基于基因表达谱的白血病分子预测模型研究

基金项目: 

国家自然科学基金重点资助项目(60234020).

详细信息
    作者简介:

    王金莲(1969-),女,陕西千阳人,博士生,讲师.

  • 中图分类号: TP18

Study on Leukemia Molecular Prediction Model with Gene Expression Profile

  • 摘要: 采用生物信息学方法对肿瘤基因表达数据进行挖掘,以获取和肿瘤不同亚型相关的候选标志基因集合,应用机器学习方法从标志基因集合中提取出甄别肿瘤不同亚型的规则集,进而建立起肿瘤预测模型.利用Relief、信息增益和分类信息指数从不同角度挖掘蕴含在基因表达谱中的候选特征基因,抽取出候选特征基因公约集合.以对不同肿瘤组织样本的识别能力为依据,选取分类能力最强的一组基因集合作为特征基因.利用规则判定树提取出反映这些特征基因相互作用的规则集并以此构建肿瘤预测模型,并将此模型应用于白血病基因表达数据中,建立了白血病分子预测模型.研究表明,该模型得到的白血病标志基因对肿瘤临床诊断具有一定的参考价值.
    Abstract: A leukemia molecular prediction model is constructed by using bioinformatics and machine learning methods with gene expression profile.Firstly,three methods including relief,classification information index and information gain index are used to select candidate feature gene set from the leukemia gene expression profile.Secondly,intersection of three candidate feature gene sets is generated,and then the best classification performance of intersection genes which is tested by SVM is selected as feature genes.Thirdly, the classification rule sets are extracted from these feature genes by using decision tree method.Finally,the leukemia molecular prediction model is constructed with these classification rules.The results show that the model is helpful to cancer clinical diagnosis and cancer gene biological experiments.Also,the two key genes (CD33,MPO)are biomarkers of leukemia clinically.
  • [1]

    GOLUB T R,SLONIM D K,TAMAYO P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.

    [2]

    KANG H C,KIN I J,PARK J H,et al.Identification of genes with different expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays[J].Clinical Cancer Res,2004,10(1pt 1):272-284.

    [3]

    CHEN X,LEUNG S Y,YUEN S T,et al.Variation in gene expression patterns in human gastric cancers[J].Molecular biology of the cell,2003,14(8):3208-3215.

    [4]

    SAKAKURA C,HAGIWARA A,NAKANISHI M,et al.Different gene expression profiles of gastric cancer cells established from primary tumor and malignant asctites[J].Br.J.Cancer,2002,87(10):1153-61.

    [5]

    LEUNG S Y,CHEN X,CHU K M,et al.Phospholipase A2 groupⅡA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis[J].PNAS,2002,99(27):16203-16208.

    [6]

    SCHERF U,ROSS D T,WALTHAM M,et al.A gene expression database for the molecular pharmacology of cancer[J]. Nature Genetics,2000,24(3):236-244.

    [7]

    ALIZADEN A A,EISEN M B,DAVIS R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403(6769):503-511.

    [8]

    ALON U,BRAKAI N,NOTTERMAN D A,et al.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].PNAS,1999,96(12):6745-6750.

    [9]

    INSTITUTE W.Cancer Program Data Sets[DB/OL].[1999-08-17].http://www.broad.mit.edu/cgi-bin/cancer/datasets.cg.

    [10]

    KONONENKO I.Estimating attributes:analysis and extensions of Relief.F.Bergadano,L.D.Raedt(eds.).Proceedings of European Conference on Machine Learning[C].Catania,Springer-Verlag,1994:171-182.

    [11] Mitchell T M,Machine learning[M].曾华军,张银奎译.北京:机械工业出版社,2003:15-43.
    [12]

    RUAN Xiao-gang,LI Ying-xin,LI Jian-geng,et al.Study on tumor-specific gene expression patterns[J].Science of China 2006,36(1):89-96.

    [13]

    KOHAVI R,JOHN G.Wrappers for feature subset selection[J].Artificial Intelligence,1997,97:273-324.

    [14]

    QUINLAN J R.See5.0:Rule Quest Research Data Mining Tools[CP].[2002-10-20].http://www.relequest.com.

    [15]

    VAPNIK V N.The nature of statistical learning theory[M].Berlin,Springer-Verlag,1994:22-23.

    [16]

    WANG Ying,XU Shi-rong,LIN Feng-ru,et al.Expressions of Cyclin E2 and Survivin in acute leukemia and their correlation[J].Journal of Experimental Hematology,2006,2:271-275.

    [17] 江雪杰,王季石,方琴.成人急性淋巴细胞白血病中乳腺癌耐药蛋白基因表达及其临床意义[J].中国实验血液学杂志,2008,1:31-34. JIANG Xue-jie,WANG Ji-shi,FANG Qin.Gene expression of breast cancer resistance protein in adult acute lymphocytic leukemia and its clinical significance[J].Journal of Experimental Hematology,2008,1:31-34.(in Chinese)
    [18] 张艳,江滨,黄晓军,等.多发性骨髓瘤的细胞遗传学研究[J].中国实验血液学杂志,2007,1:76-78. ZHANG Yan,JIANG Bin,HUANG Xiao-jun,et al.Cytogenetic study of multiple myeloma[J].Journal of Experimental Hematology,2007,1:76-78.(in Chinese)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-02
  • 网络出版日期:  2022-12-06

目录

    /

    返回文章
    返回