实时补缺方法对交通信息融合精度的影响

    Impact of Real-time Data Filling Methods on Multi-source Data Fusion

    • 摘要: 针对各种检测方式中因检测设备失效或因错误数据的排除处理等导致的数据缺失情况,本文提出了时间序列法、空间序列法和历史数据法等3种缺失数据实时补缺方法,并以城市快速路的浮动车数据和微波数据的数据融合为例,通过比较上述方法的补缺精度以及对数据融合精度的影响,分析了不同补缺方法的适用性以及数据补缺处理中的使用优先级.结果表明,基于时间序列和空间序列补缺方法的数据融合结果的平均相对误差均能控制在20%以内,所提出的实时数据补缺方法具有良好的实用性.

       

      Abstract: The authers proposed three kinds of real-time data filling methods including time series,spatial correlation and history database methods to complement the missing data,which resulted from detection equipment failure and error data-elimination process.The data filling results based on those methods were applied respectively to an urban expressway multi-source data fusion model,in which,floating car data and remote traffic microwave sensor(RTMS) data were used,and the impact on data-fusion accuracy and the application priority of those data filling methods were analyzed.Resultsshow that the mean absolute percentage errors(MAPEs) of data fusion models based on time series and spatial correlation methods are both under 20%,and that the practicability of the proposed methods is verified.

       

    /

    返回文章
    返回