寻求Soliton方程的Hamilton结构之共轭方程法

    The Conjugate Equation Approach for Finding the Hamiltonian Structure of Soliton Equation

    • 摘要: 对一类广泛的谱问题之零方程与共轭表示之间建立了对应关系.通过这一关系,给出了确定非线性演化方程(NLEEs)的Hamilton结构的一种新方法,它较之以往的方法更简单,且有较广的适用范围.使用这一关系证明了这些NLEEs之守恒律的一些关系,特别对于AKNS谱问题,量Δ即是守恒密度(C.D.)又是守恒流(C.F.)的生成元.

       

      Abstract: We estabilished a corresponding relation between the zero curvature equation and its conjugate representation for a general spectral problem. Using this relation, we developed a new approach of determining the Hamiltion structures of Nonlinear Evolution Equations (NLEEs), which is simpler and has more application than other approaches. Furthermore, we obtained some results about conservation laws of NLEEs especially for AKNS spectral problem, i.e. quantity Δ is the generator of both conservate density and a conservate fluid.

       

    /

    返回文章
    返回