• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

含流体夹杂弹性介质有效性能

马连华, 杨庆生

马连华, 杨庆生. 含流体夹杂弹性介质有效性能[J]. 北京工业大学学报, 2011, 37(8): 1136-1142.
引用本文: 马连华, 杨庆生. 含流体夹杂弹性介质有效性能[J]. 北京工业大学学报, 2011, 37(8): 1136-1142.
MA Lian-hua, YANG Qing-sheng. Study on Effective Properties of Elastic Media Containing Fluid Inclusions[J]. Journal of Beijing University of Technology, 2011, 37(8): 1136-1142.
Citation: MA Lian-hua, YANG Qing-sheng. Study on Effective Properties of Elastic Media Containing Fluid Inclusions[J]. Journal of Beijing University of Technology, 2011, 37(8): 1136-1142.

含流体夹杂弹性介质有效性能

基金项目: 

国家自然科学基金资助项目(10872011)

北京市自然科学基金资助项目(3092006).

详细信息
    作者简介:

    马连华(1979—),男,河北景县人,博士研究生.

  • 中图分类号: TB332

Study on Effective Properties of Elastic Media Containing Fluid Inclusions

  • 摘要: 为了研究流体内压对闭孔材料有效性能的影响,采用细观力学方法,建立了含有内压流体的细观力学模型,用以分析孔压与材料宏观变形的耦合效应.流体和内压通过等效特征应变来表征,将Eshelby-Mori-Tanaka等效夹杂原理推广到含流体夹杂的材料有效性能问题中,得到了含流体夹杂弹性介质有效刚度的解析式.比较解析解与有限元数值结果可知二者吻合较好.研究表明,材料的有效体积模量与流体夹杂性能、体分比及内压有关,且流体内压能显著提高材料的有效体积模量,而有效剪切模量与流体性能及内压无关.
    Abstract: To examine the effects of fluid pressure on effective properties of solids with closed pores,a new micromechanical model has been developed to investigate the coupling effect between the macroscopic deformation and the pore pressure.In the proposed micromechanical model,the internal pressure is generated by applying eigenstrain in the domain occupied by the fluid phase.The effective properties have been obtained with the use of Eshelby-Mori-Tanaka equivalent inclusion method.Analytical results are verified against those from finite element solutions and a good agreement is achieved.The results show the overall effective bulk modulus depends on the property,the volume fraction and the internal pressure of fluid inclusions.The fluid pressure can strengthen the overall effective bulk modulus,but it has no contribution to the overall effective shear modulus.
  • [1]

    GASSMANN F.Elasticity of porous media:uber die elastizitat poroser medien[J].Vierteljahrsschrift der NaturforschendenGesselschaft,1951,96(1):1-23.

    [2]

    BESKOS D E.Dynamics of saturated rockⅠ:equations of motion[J].Engrg Mech ASCE,1989,115:982-995.

    [3]

    O’CONNELL R J,BUDIANSKY B.Viscoelastic properties of fluid-saturated cracked solids[J].Geophys Res,1977,82(B36):5719-5736.

    [4]

    ENDRES A L,KNIGHTT R J.Incorporating pore geometry and fluid pressure communication into modeling the elasticbehavior of porous rocks[J].Geophysics,1997,62(1):106-117.

    [5]

    THOMSEN L.Elastic anisotropy due to aligned cracks in porous rocks[J].Geopys Prosp,1995,43(6):805-829.

    [6]

    XU S,WHITE R E.A new velocity model for clay-sand mixtures[J].Geopys Prosp,1995,43(1):91-118.

    [7]

    XU S,WHITE R E.A physical model for shear-wave velocity prediction[J].Geophs Prosp,1996,44(4):687-717.

    [8]

    YANG Qing-sheng,LI Chun-jiang.Evolution of properties in hydration of cements—a numerical study[J].MechanicsResearch Communications,2006,33(5):717-727.

    [9]

    XIA Kai-ming,ZHANG Zhi-jun.Three-dimensional finite/infinite elements analysis of fluid flow in porous media[J].Applied Mathematical Modeling,2006,30(9):904-919.

    [10] 陈建康,黄筑平,刘熠.刚性微粒填充高聚物的宏观本构关系[J].高分子学报,1998(6):60-63.CHEN Jian-kang,HUANG Zhu-ping,LIU Yi.The macroscopic constitutive relation of particulate reinforced polymer[J].Acta Polymerica Sinica,1998(6):60-63.(in Chinese)
    [11]

    CHEN J K,ZHU J,WANG J,et al.The properties of the Poisson’s ratio of microcellular foams with low porosity:non-stationary,negative value,and singularity[J].Mechanics of Time-Dependent Materials,2006,10(4):315-330.

    [12]

    ZHANG Ming-hua,JIANG Min-qiang,CHEN Jian-kang.Variation of flexural strength of cement mortar attacked by sulfateions[J].Engineering Fracture Mechanics,2008,75(17):4948-4957.

    [13]

    DORMIEUX L,MOLINARI A,KONDO D.Micromechanical approach to the behavior of poroelastic materials[J].Journalof the Mechanics and Physics of Solids,2002,50(10):2203-2231.

    [14]

    KREHER W.Residual stresses and stored elastic energy of composites and polycrystals[J].J Mech Phys Solids,1990,38(1):115-128.

    [15]

    ZHANG Wei-xu,XU Zhi-min,WANG Tie-jun,et al.Effect of inner gas pressure on the elastoplastic behavior of porousmaterials:a second-order moment micromechanics model[J].International Journal of Plasticity,2009,25(7):1231-1252.

    [16] 秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006:16-17.
    [17] 杨庆生,马连华.含流体夹杂复合材料的细观力学[C]∥第十五届全国复合材料学术会议论文集.北京:国防工业出版社,2008:216-220.YANG Qing-sheng,MA Lian-hua.Micromechanics of composites with fluid inclusions[C]∥Proceedings of 15th NationalConference on Composite Materials.Beijing:National Defense Industry Press,2008:216-220.(in Chinese)
    [18] 刘协权,倪新华,路晓波.颗粒增强镍基合金热膨胀系数预报[J].稀有金属材料与工程,2005,34(增刊1):273-274.LIU Xie-quan,NI Xin-hua,LU Xiao-bo.Thermal expansion coefficient prediction for Ni base alloy ceramic compositecoating[J].Rare Metal Materials and Engineering,2005,34(Supp1):273-274.(in Chinese)
    [19]

    XU S Y.Modelling the effect of fluid communication on velocities in anisotropic porous rocks[J].International Journal ofSolids and Structures,1998,35(34-35):4685-4707.

计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-26
  • 网络出版日期:  2022-11-18

目录

    /

    返回文章
    返回