多层前馈神经网络在自动控制系统中的应用
The Application of the Feedforward Multilayed Neural Network in Automatic Control
-
摘要: 基于神经网络所具有的灵活强大的学习能力,提出了一种用多层前馈神经网络实现的控制器.该控制器通过学习系统的逆动力学特性,能由系统反馈回的输入/输出状态及未来期望输出值直接得到应加在系统输入端的控制量.另外,通过引入系统的神经网络正向模型,可将系统输出端的误差经网络逐层反传,在线调节神经网络控制器的权重,从而使控制器具有自学习能力,以适应控制对象参数的变化,确保良好的控制效果.Abstract: A neural controller with a feedforward multilayered network controller is proposed. It is able to learn the inverse of the plant so that it can directly provide the appropriate inputs to the plant according to the feedback input/output data and the desired outputs. Furthrmore, on the basis of an introduced forward model of the Plant with a neural network, the weights of the neural controller can be on-line by backpropagation errors between the actual and desired plant outputs, which maks the neural controller Perform adaptive control.