基于连续型Hopfield网络的最优控制方法

    Optimal Control Based on Continuous Hopfield Neural Network

    • 摘要: 为克服应用离散型Hopfield网络解决动态最优控制问题时,计算量随着系统维数和控制时域的增加而指数增大的不足,提出了一种基于连续型Hopfield网络解决线性离散系统二次型最优控制问题的方法.该方法将线性二次型性能指标转化为连续型Hopfield网络的能量函数,控制序列转化为连续型Hopfield网络神经元的输出向量,从而将线性二次型动态优化问题的求解过程转化为相应的连续型Hopfield网络从初态向终态的运行过程,网络稳态输出反映了最优控制序列.该方法计算量小,实时性好,便于在线优化控制.

       

      Abstract: For solving linear quadratic (LQ) optimal control problem of discrete-time systems, a new alternative method is developed based on continuous Hopfield neural network (CHNN). It can avoid the phenomena that the computation will increase exponentially with the increase of system dimension and control time-horizon while using discrete Hopfield neural network to solve the sptimal control. By this method, the LQ performance index is transformed into the energy function of CHNN, and the control sequence into the output vector of the neurons of CHNN. As a result, solving LQ dynamic optimization problem is equivalent to the operating process of CHNN from its initial state to the terminal state. The stable output vector of CHNN represents the optimal control sequence. The method can be applied to online optimal control for its little cost in computation and good real-time performance.

       

    /

    返回文章
    返回