Study on the Elastic and Piezoelectric Properties of LBO Crystal
-
摘要: 计算并绘制了LiB3O5(简称LBO)晶体在(100)、(010)、(001)3个主晶面内慢度分布曲线,得到了声速的最大值及其方向.探讨了LBO晶体纵向压电系数d33及机电耦合系数k33随空间方向变化的规律,分别得到了LBO晶体压电系数d33及机电耦合系数k33的最大值及其方向,并与Li2B4O7进行了比较.结果表明,LBO晶体有作为声光器件和压电器件的潜力,并对相关器件的设计、开发及利用等方面有一定的理论指导作用.Abstract: The slowness distribution curves in (100), (010) and (001) for LiB3O5 have been plotted. The maximum of acoustic velocities and their directions have also been gained, and they are made comparison with that of LiB5O7. Crystal orientation dependence of piezoelectric modulus d33 and electromechanical coupling coefficient k33 have been calculated phenomenologically. The maximum values of piezoelectric modulus d33 and electromechanical coefficient k33 are obtained, and the orientations are also determined. It is found that the values of piezoelectric modulus and electromechanical coefficient for LBO are similar to those of Li2B4O7 and the velocities of acoustic wave are larger than those of Li2B4O7. These results will give certain directions for the application of LiB3O5 to the devices of piezoelectricity and acoustic-optics.
-
-
[1] Dirac P A M. Lectur on quantum mechanics[M]. New York:Yeshiva University Press, 1964.
[2] WANG An-min, RUAN Tu-nan. Extension of the Dirac-Bergmann theory of constranied system[J]. Phys Rev,1996, A54:57-80.
[3] COSTA M E V, GIROTTI H O, SIMOES T J M. Dynamics of gauge system and Dirac's conjecture[J]. PhysRev, 1985, D32:405-410.
[4] CABO A. Dirac's conjecture for systems having only first-class constraints[J]. J Phys:A Math Gen, 1986, 19:629-638.
[5] HENNEAUX M, TEITEBOIM C, ZANELL. Gauge invariance and degree of freedom count[J]. J Nucl Phys,1990, B332:169-188.
[6] ALLOCK G R. The intrinsic properties of rank and nullity of the Lagrange bracket in the one dimensionalcalculus of variations[J]. Phil Trans Roy Soc, 1975, A279:485-545.
[7] CAWLEY R. Determination of the Hamiltonian in the presence of constraints[J]. Phys Rev Lett, 1979, 42:413.
[8] CAWLEY R. Augmented algorithm for the Hamiltonian[J]. Phys Rev, 1980, D21:2988-2990.
[9] LI Zi-ping. Symmetry in phase space for a system with a singular Lagrangian[J]. Phys Rev, 1994, E52:876-887.
[10] LI Zi-ping, LI Xin. Generalized Nother theorems and applications[J]. Int J Theor Phys, 1991, 30:225-233.
[11] QI Z. Dirac's constraint theory:correction to alleged conterexamples[J]. Int J Theor Phys, 1990, 29:1309-1312.
[12] 李子平.约束哈密顿系统及其对称性质[M].北京:北京工业大学出版社,1999. [13] LI Zi-ping. Symmetry in a constrained Hamiltonian system with a singular higher-order Lagrangian[J]. J Phys:A Math Gen, 1991, 24:4261-4274.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 5