方向基函数神经网络及其逼近能力

    Direction-basis-function Neural Network and Its Approximation Capabilities

    • 摘要: 描述了方向基函数神经网络的基本概念,并通过利用分析仿射基函数和径向基函数神经网络逼近能力的方法证明了方向基函数神经网络不仅能够逼近有限点集上的任意方向不变函数,能够在单位球面上一致逼近任意方向连续函数,而且还能够依Lp范数平均逼近任意的p次方向可积函数。

       

      Abstract: The basic concept of direction-basis-function neural networks is described. By the method of analyzing the approximation capabilities of affine-basis-function and radial-basis-function neural networks, it is verified that direction-basis-function neural networks can approximate any direction-invariance function defined on a finite set, uniformly approximate any direction-continuum function defined on a unit sphere, and averagely approximate any p-order direction-integral function in the Lp-norm.

       

    /

    返回文章
    返回