关于Dirac猜想
On Dirac's Conjecture
-
摘要: 基于约束Hamilton系统在相空间中的对称性质;给出了由扩展Hamilton量决定的正则Noether恒等式,指出与第一类约束相联系的Lagrange乘子沿着系统运动的轨线可能不是任意的,离开系统运动的轨线也许同样不是任意的,从而对Dirac猜想提出质疑.并且给出了一个新的反例,详细讨论了Dirac猜想在此例中失效,而这些讨论均未涉及对约束作线性化处理.Abstract: Based on the canonical symmetries of constrained Hamilton system, the extended canonical Nother identical equations decided by the extended Hamiltonian are formulated. It has been shown that the constraint (Lagrange) multipliers associated with the first-class constraints may not be arbitrary whether along the moving path of system or away from the path. This implies that Dirac's conjecture is questioned. A new counterexample is given for disscussion on the invalidity of Dirac's conjesture in the example. But the discussions involve no linearization of constraint.