边介数聚类算法在肿瘤基因表达谱中的应用

    Application of Betweenness Clustering Algorithm in Cancer Gene Expression Profiles

    • 摘要: 基于肿瘤基因表达谱研究了肿瘤相关基因及其功能模块的聚类算法,同时利用模块度评价了算法的有效性.通过与层次聚类算法的比较,证明边介数聚类算法在肿瘤基因功能模块聚类方面具有一定的有效性和实用性.以人结肠癌基因表达谱为研究对象,应用边介数聚类算法将158个从2万多个原始数据中提取的特征基因聚成7种功能类.通过GO数据库检索进一步证明这7类基因具有明确的生物学功能和意义.

       

      Abstract: One of cancer related gene function research is the discovery of gene functional module.Here,a efficient clustering algorithm proposed to reveal the gene functional modules based on gene expression profiles. First,the betweenness algorithm was used to mine the cancer gene modules from the 158 feature genes extracted from the 20,000 colon cancer gene expression profiles.Second,the modularity function which was used to assess the performance of clustering algorithm was applied to the colon cancer gene modules and got 7 gene function modules.Finally,combining with GO database the biological process of these modules was classified.The results show that this algorithm is feasible and effective in gene function clustering.

       

    /

    返回文章
    返回