• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

应力约束下预应力钢桁架离散变量优化设计

姚力, 张爱林, 杨海军

姚力, 张爱林, 杨海军. 应力约束下预应力钢桁架离散变量优化设计[J]. 北京工业大学学报, 2011, 37(3): 368-374.
引用本文: 姚力, 张爱林, 杨海军. 应力约束下预应力钢桁架离散变量优化设计[J]. 北京工业大学学报, 2011, 37(3): 368-374.
YAO Li, ZHANG Ai-lin, YANG Hai-jun. Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains[J]. Journal of Beijing University of Technology, 2011, 37(3): 368-374.
Citation: YAO Li, ZHANG Ai-lin, YANG Hai-jun. Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains[J]. Journal of Beijing University of Technology, 2011, 37(3): 368-374.

应力约束下预应力钢桁架离散变量优化设计

基金项目: 

国家自然科学基金项目资助(50678012)

河北省科技厅项目资助(072156184).

详细信息
    作者简介:

    姚力(1967—),女,河北丰宁人,副教授.

  • 中图分类号: TU394

Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains

  • 摘要: 对影响预应力钢桁架优化设计的2类变量,包括连续的索力值和离散的截面尺寸进行研究.建立了以应力和结构质量为约束条件、以最小化结构应变能为目标函数的数学优化模型.以杆件在预应力和外荷载共同作用下储存应变能最小确定施加在索上的预拉力.计算构件由于尺寸改变引起结构质量变化和应变能变化之比的相对差商,以此确定搜索方向.应用渐进结构优化法逐步调整构件截面尺寸,循环迭代,直至索力值和截面尺寸达到最优.算例与预应力钢结构理论结果相吻合,可为预应力钢结构工程设计提供最优的索力值和型钢的选择.
    Abstract: It is discussed the optimization design of prestressed cable supported steel truss with its design variables including continuous cables' pretension force and discrete cross section size.A optimization mathematical model is established in such a form that the member's stress and structural mass are constrain conditions and the minimum structural strain energy is the objective function.The cables' pretension force can be determined by minimizing all member bars strain energy when prestress and external load apply together.Each member's relative difference quotient which mass variations divide energy variations caused by the member's size change is calculated to determine searching direction.Evolutionary structural optimization is adopt to modify member cross section size gradually untill cables' pretension force and members' cross section size reach optimal by iteration.Result of examples in the paper coincides with that of prestress steel structures theory,the method in this paper can provide optimum cables' pretension force and formed steel for the prestressed steel structure design.
  • [1] 陆赐麟,尹思明,刘锡良.现代预应力钢结构(修订版)[M].北京:人民交通出版社,2006:20-26.
    [2] 杨海军,张爱林.多索预应力桁架结构优化设计[J].建筑结构,2007,37(8):94-96.YANG Hai-jun,ZHANG Ai-lin.Optimization design of prestressed truss structures with multiple cables[J].Buildingstructure,2007,37(8):94-96.(in Chinese)
    [3] 张爱林,杨海军.预应力索-桁架结构形状优化设计[J].计算力学学报,2007,24(1):91-97.ZHANG Ai-lin,YANG Hai-jun.Shape optimization design of prestressed cable-truss structures[J].Chinese Journal ofComputational Mechanics,2007,24(1):91-97.(in Chinese)
    [4] 吴杰,张其林.基于混合变量的张弦梁结构优化设计研究[J].四川建筑科学研究,2006,32(2):9-11.WU Jie,ZHANG Qi-lin.Research for optimum design of beam string structures based on hybrid variable[J].SichuanBuilding Science,2006,32(2):9-11.(in Chinese)
    [5] 王连广,侯献语,冯刚.基于遗传算法的预应力钢桁架优化设计[J].沈阳建筑大学学报:自然科学版,2006,22(4):567-570.WANG Lian-guang,HOU Xian-yu,FENG Gan.Optimization design of pre-stressed steel trusses using a genetic algorithm[J].Journal of Shenyang Jianzhu University:Natural Science,2006,22(4):567-570.(in Chinese)
    [6] 郭鹏飞,韩英仕,魏英姿.离散变量结构优化的拟满应力设计方法[J].工程力学,2000,17(1):94-98.GUO Peng-fei,HAN Ying-shi,WEI Ying-zi.An imitation full-stress design method for structural optimization with discretevariables[J].Engineering Mechanics,2000,17(1):94-98.(in Chinese)
    [7]

    CARSTEN EBENAU,JENS ROTTSCHFER,GEORG THIERAUF.An advanced evolutionary strategy with an adaptivepenalty function for mixed-discrete structural optimization[J].Advances in Engineering Software,2005,36(1):29–38.

    [8] 柴山,王健,曹新忠.离散变量优化设计的方向差商法[J].计算力学学报,1994,11(3):283-293.CHAI Shan,WANG Jian,CAO Xin-zhong.A direction-difference-quotient method of the optimal design of discrete variable[J].Chinese Journal of Computational Mechanics,1994,11(3):283-293.(in Chinese)
    [9] 曾国华,董聪.离散变量结构优化设计的最优综合效能法[J].工程力学,2008,25(9):106-110.ZENG Guo-hua,DONG Cong.Optimum synthetic effectiveness method for structural optimization with discrete variables[J].Engineering Mechanics,2008,25(9):106-110.(in Chinese)
    [10]

    EYSA SALAJEGHEH,JAVSD SALAJEGHEH.Optimum design of structures with discrete variables using higher orderapproximation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(13-14):1395-1419.

    [11]

    CAI Jianbo,GEORG THIERAUF.Evolution strategies for solving discrete optimization problems[J].Advances inEngineering Software,1996,25(2-3):177-183.

计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-28
  • 网络出版日期:  2022-11-18

目录

    /

    返回文章
    返回