基于组合特征判别分析的三维人脸识别算法

    3D Face Recognition Algorithm Based on Discriminant Analysis Using Composite Features

    • 摘要: 针对人脸识别中特征表示与提取问题, 提出了一种新颖的基于组合特征判别分析的三维人脸识别算法.该算法首先使用基于非均匀网格重采样的方法对所有三维人脸做规格化处理, 使三维人脸具有统一的点数和拓扑结构;其次, 以先分段、再重叠的形式将原本一维向量表示组织为二维矩阵表示, 然后使用二维线性判别分析方法 (2DLDA) 对获得的数据进行特征抽取.这种方法在避免图像信息的丢失、增加组合特征的同时, 理论上也能避免单纯使用线性判别分析 (LDA) 进行特征抽取时容易出现的小样本问题.在BJUT-3D大规模三维人脸数据库上的实验表明, 本方法取得了良好的识别效果.

       

      Abstract: This paper proposes an approach of face recognition using composite features.This approach first aligned 3D faces based on non-uniform mesh re-sampling which result the uniform number of vertex and topology structure and kept in a vector.Second, we changed the vector to the matrix by division and overlap, and then 2DLDA suggests a feature selection strategy to select the most discriminative features from the corner.This approach not only avoided face information missing, increased the number of composite feature, but also avoided the small sample size problem in theory.Experimental results for 3D face data set from BJUT-3D face database have demonstrated the performance of our algorithm.

       

    /

    返回文章
    返回