一类广义幂级数环的有限维数

    On Finite Dimension of a Kind of Generalized Power Series Rings

    • 摘要:R是一个有单位元的完备的凝聚交换环,研究并比较了R的有限维数与R上的广义幂级数环R≤,S的有限维数的关系,得到了一些有限维数不等式.结果表明:如果R是一个完备的凝聚的有单位元的交换环,则R的有限投射维数不超过RS,≤的有限投射维数;令R是一个完备的凝聚的有单位元的交换环,则R的有限内射维数不超过RS,≤的有限内射维数;如果R是一个完备的凝聚的有单位元的交换环,则R的有限弱维数不超过RS,≤的有限弱维数.

       

      Abstract: Let R be a perfect and coherent commutative ring with unit element,in this paper the relationship between the finitistic dimensions of R and the generalized power series ring R≤,Sover R was investigated,and some inequalities for finitistic dimensions were obtained.Resultsshow that the finitistic projective(injective) dimension of R is less than and equal to the finitistic projective(injective)dimension of R≤,Sand the finitistic weak dimension of R is less than and equal to the finitistic weak dimension of R≤,S.

       

    /

    返回文章
    返回