一类电磁轴承非线性系统模型的多极限环分岔
The Bifurcation of Mutiple Limit Cycles for a Rotor-active Magnetic Bearing of Nonlinear System
-
摘要: 研究了一类电磁轴承非线性系统模型的多极限环分岔问题,该模型平均方程为5阶Z2-等变扰动平面Hamilton向量场,利用平面动力系统分岔理论,借助于Maple符号软件计算程序,通过控制其参数,发现系统在2组精确的参数控制条件下分别存在19和23个极限环,并给出了其相对位置的不同构型.Abstract: In this paper,we consider a kind of rotor-active magnetic bearing of nonlinear system.The average equations of the system are in the form of a perturbed polynomial Hamiltonian system of degree 5.By using the bifurcation theory of planar dynamical system and the Maple symbolic computation program,we control the parameters to obtain 19 and 23 limit cycles under two different conditions and the configurations of com- pound eyes are also obtained.